Identification of the causes of convective clouds in extreme rainfall events with hail based on dual-polar radar imagery
DOI:
https://doi.org/10.21831/jps.v30i2.89950Keywords:
hail, extreme weather, cumolonimbus cloud, weather radar, HimawariAbstract
This study aims to analyze the atmospheric dynamics behind the formation of convective clouds that produce hail through a multi-instrumental approach. The methods used include streamline map analysis, synoptic data from the Yogyakarta Climatology Station, Himawari-9 HCAI satellite imagery, and dual-polar radar data from the Ahmad Yani Meteorological Station. The results reveal local wind convergence and significant air pressure drop, triggering rapid and intensive formation of Cumulonimbus clouds. Radar products, such as CMAX and HAILSZ, indicate high reflectivity and the presence of large hail particles within the clouds. Hail size is estimated to range from 10–20 mm with a probability of more than 80%. Rain validation shows the highest accumulation of 74 mm/day in Minggir District, Sleman. This study emphasizes the importance of integrating satellite, radar, and surface observation data for detecting extreme weather in tropical regions.
References
Ardiansyah, D. (2022). Labilitas atmosfer terkait kejadian hujan es (Studi kasus hujan es di Sindang Dataran Bengkulu tanggal 25 Juni 2021). Buletin Meteorologi, Klimatologi dan Geofisika, 2(2), 34-48. https://balai2bmkg.id/index.php/buletin_mkg/article/view/16
Arya, S. P. (2001). Introduction to micrometeorology. Academic Press.
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., & Sumida, Y. (2016). An introduction to Himawari-8/9—Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan, 94(2), 151-183. https://doi.org/10.2151/jmsj.2016-009
BPBD DIY. (2024). Fenomena hujan es dan dampak hujan deras disertai angin kencang di DIY. [Online].Retrieved from https://bpbd.jogjaprov.go.id/berita/fenomena-hujan-es-dan-dampak-hujan-deras-disertai-angin-kencang-di-diy
Elachi, C., & Van Zyl, J. J. (2021). Introduction to the physics and techniques of remote sensing. John Wiley & Sons.
Frystine, M., Mulya, A., Kristianto, A., & Maulidyah, M. P. (2022). Analysis of atmospheric condition on hail event at Pelalawan (Case Study: September 23rd, 2019). Jurnal Meteorologi dan Geofisika, 23(3), 45–56. https://doi.org/10.31172/jmg.v23i3.813
Haryadi, Putra, R. M., & Widodo, P. (2024). Studi profil awan konvektif penyebab hujan es di Jakarta menggunakan radar cuaca (Studi kasus hujan es di Jakarta 17 Desember 2022). PENDIPA Journal of Science Education, 8(2), 210-216. https://doi.org/10.33369/pendipa.8.2.210-216
Li, Z., Zhang, T., Zheng, D., Yu, H., Cui, X., Bao, M., & Zhou, F. (2024). Study of dynamics-microphysical-lightning activity characteristics in a tropical hailstorm. Journal of Atmospheric and Solar-Terrestrial Physics, 259, 106241. https://www.sciencedirect.com/science/article/abs/pii/S1364682624000695
Liu, W., Zhang, Q., Li, C., Xu, L., & Xiao, W. (2022). The influence of soil moisture on convective activity: A review. Theoretical and Applied Climatology, 149(1), 221-232.
Maulana, M. I. S., & Kristianto, A. (2024). Sensitivity of WRF-HAILCAST Model for hailstone detection in Central Lombok on 24 February 2019. Jurnal Fisika dan Aplikasinya, 20(1), 1-7. https://doi.org/ 10.12962/j24604682.v20i1.14010
Maulidianto, M., Tempo, N. F. R., & Haryanto, Y. D. (2023). Analisis kondisi atmosfer saat kejadian hujan es (Studi kasus: Kejadian hujan es tanggal 29 November 2023 di Kabupaten Timor Tengah Selatan). JFT: Jurnal Fisika dan Terapannya, 11(1). https://doi.org/10.24252/jft.v11i1.45152
Nugroho, A. D., & Fadlan, A. (2018). Analisis kejadian hujan es berdasarkan kondisi atmosfer dan citra satelit Himawari-8 (Studi kasus: Magelang, 24 Januari 2018). Prosiding Seminar Nasional Meteorologi Klimatologi dan Geofisika, STMKG. https://doi.org/10.24198/jiif.v2i2.19711
Paski, J. A. I., Permana, D. S., Sepriando, A., & Pertiwi, D. A. S. (2017). Analisis dinamika atmosfer kejadian hujan es memanfaatkan citra radar dan satelit Himawari-8 (Studi kasus: Tanggal 3 Mei 2017 di Kota Bandung). In Seminar Nasional Penginderaan Jauh.
Prasetyo, S., Abdilah, S., Nugraheni, I. R., & Sagita, N. (2022). Studi awan konvektif penyebab hujan es menggunakan radar cuaca Doppler single polarization di Bogor (23 September 2020). Jurnal Aplikasi Meteorologi, 1(1), 32-42. https://stmkg.balai2bmkg.id/index.php/jam/article/view/17
Ratnam, M. V., Santhi, Y. D., Rajeevan, M., & Rao, S. V. B. (2013). Diurnal variability of stability indices observed using radiosonde observations over a tropical station: Comparison with microwave radiometer measurements. Atmospheric Research, 124, 21–33. https://linkinghub.elsevier.com/retrieve/pii/S0169809512004371
Ryzhkov, A. V., Kumjian, M. R., Ganson, S. M., & Zhang, P. (2013). Polarimetric radar characteristics of melting hail. Journal of Applied Meteorology and Climatology, 52(10), 2291-2308. https://doi.org/10.1175/JAMC-D-12-0121.1
Sari, F. P., Manola, I., Tsiringakis, A., & Steeneveld, G. J. (2023). Understanding the role of sea surface temperature and urbanization on severe thunderstorms dynamics: A case study in Surabaya, Indonesia. Journal of Geophysical Research: Atmospheres, 128(17), e2023JD038817. https://doi.org/10.1029/2023JD038817
Singh, D. K., Yadav, R., KRISHNAN, K. S., & RAWAT, L. C. N. (2021). Analysis of three unusual severe weather events over Delhi during May-June, 2018 using Dual-Pol Doppler Weather Radar and GNSS data. MAUSAM, 72(4), 719-738. https://doi.org/10.54302/mausam.v72i4.3543
Stephens, G. L., Shiro, K. A., Hakuba, M. Z., Takahashi, H., Pilewskie, J. A., Andrews, T., & Wu, L. (2024). Tropical deep convection, cloud feedbacks and climate sensitivity. Surveys in Geophysics, 1-29. https://doi.org/10.1007/s10712-024-09831-1
Sulistiyono, W., Salsabil, N. H. S., & Ramadhan, S. A. (2024). Aplikasi produk radar C-band dalam identifikasi awan penghasil hujan es (Studi kasus: Bogor, 24 Januari 2022). GEOGRAPHIA: Jurnal Pendidikan dan Penelitian Geografi, 5(2), 137-143. https://doi.org/ 10.53682/gjppg.v5i2.8577
Surendran, U., Nagakumar, K. C. V., & Samuel, M. P. (2024). Remote sensing in precision agriculture. In Digital agriculture: A solution for sustainable food and nutritional security (pp. 201-223). Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-031-43548-5_7
Yang, H., Xia, R., Li, F., & Yu, B. (2025). Statistical characteristics, circulation patterns, and environmental features of severe convective wind events in Beijing. Atmospheric Research, 318, 107996. https://doi.org/10.1016/j.atmosres.2025.107996
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Rayhan Rafi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Who Can Submit?
Any individual may submit an original manuscript for consideration for publication in Jurnal Penelitian Saintek as long as they hold the copyright to the work or are authorized by the copyright owner(s) to submit it. Authors retain initial ownership of the copyrights to their works prior to publication, except in cases where, as a condition of employment, they have agreed to transfer copyright to their employer.
User Rights
Jurnal Penelitian Saintek is an Open Access journal. Users are granted the right to read, download, copy, distribute, print, search, or link to the full texts of articles, provided they comply with the conditions of the Creative Commons Attribution-ShareAlike License 4.0 (CC BY-SA 4.0).
https://creativecommons.org/licenses/by-sa/4.0/
Author Rights
Authors retains copyrights.
Jurnal Penelitian Saintek by http://journal.uny.ac.id/index.php/saintek is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




