Identification of the causes of convective clouds in extreme rainfall events with hail based on dual-polar radar imagery

Authors

  • Rayhan Rafi Sekolah Tinggi Meteorologi, Klimatologi, dan Geofisika, Indonesia
  • Dwi Kuncoro Sekolah Tinggi Meteorologi Klimatologi dan Geofisika, Indonesia
  • Bima Arzhida Sekolah Tinggi Meteorologi Klimatologi dan Geofisika, Indonesia
  • Noor Jannah Indriyani Stasiun Meteorologi Kelas II Ahmad Yani Semarang, Indonesia
  • Warjono Warjono Stasiun Meteorologi Kelas II Yogyakarta, Indonesia

DOI:

https://doi.org/10.21831/jps.v30i2.89950

Keywords:

hail, extreme weather, cumolonimbus cloud, weather radar, Himawari

Abstract

This study aims to analyze the atmospheric dynamics behind the formation of convective clouds that produce hail through a multi-instrumental approach. The methods used include streamline map analysis, synoptic data from the Yogyakarta Climatology Station, Himawari-9 HCAI satellite imagery, and dual-polar radar data from the Ahmad Yani Meteorological Station. The results reveal local wind convergence and significant air pressure drop, triggering rapid and intensive formation of Cumulonimbus clouds. Radar products, such as CMAX and HAILSZ, indicate high reflectivity and the presence of large hail particles within the clouds. Hail size is estimated to range from 10–20 mm with a probability of more than 80%. Rain validation shows the highest accumulation of 74 mm/day in Minggir District, Sleman. This study emphasizes the importance of integrating satellite, radar, and surface observation data for detecting extreme weather in tropical regions.

References

Ardiansyah, D. (2022). Labilitas atmosfer terkait kejadian hujan es (Studi kasus hujan es di Sindang Dataran Bengkulu tanggal 25 Juni 2021). Buletin Meteorologi, Klimatologi dan Geofisika, 2(2), 34-48. https://balai2bmkg.id/index.php/buletin_mkg/article/view/16

Arya, S. P. (2001). Introduction to micrometeorology. Academic Press.

Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., & Sumida, Y. (2016). An introduction to Himawari-8/9—Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan, 94(2), 151-183. https://doi.org/10.2151/jmsj.2016-009

BPBD DIY. (2024). Fenomena hujan es dan dampak hujan deras disertai angin kencang di DIY. [Online].Retrieved from https://bpbd.jogjaprov.go.id/berita/fenomena-hujan-es-dan-dampak-hujan-deras-disertai-angin-kencang-di-diy

Elachi, C., & Van Zyl, J. J. (2021). Introduction to the physics and techniques of remote sensing. John Wiley & Sons.

Frystine, M., Mulya, A., Kristianto, A., & Maulidyah, M. P. (2022). Analysis of atmospheric condition on hail event at Pelalawan (Case Study: September 23rd, 2019). Jurnal Meteorologi dan Geofisika, 23(3), 45–56. https://doi.org/10.31172/jmg.v23i3.813

Haryadi, Putra, R. M., & Widodo, P. (2024). Studi profil awan konvektif penyebab hujan es di Jakarta menggunakan radar cuaca (Studi kasus hujan es di Jakarta 17 Desember 2022). PENDIPA Journal of Science Education, 8(2), 210-216. https://doi.org/10.33369/pendipa.8.2.210-216

Li, Z., Zhang, T., Zheng, D., Yu, H., Cui, X., Bao, M., & Zhou, F. (2024). Study of dynamics-microphysical-lightning activity characteristics in a tropical hailstorm. Journal of Atmospheric and Solar-Terrestrial Physics, 259, 106241. https://www.sciencedirect.com/science/article/abs/pii/S1364682624000695

Liu, W., Zhang, Q., Li, C., Xu, L., & Xiao, W. (2022). The influence of soil moisture on convective activity: A review. Theoretical and Applied Climatology, 149(1), 221-232.

Maulana, M. I. S., & Kristianto, A. (2024). Sensitivity of WRF-HAILCAST Model for hailstone detection in Central Lombok on 24 February 2019. Jurnal Fisika dan Aplikasinya, 20(1), 1-7. https://doi.org/ 10.12962/j24604682.v20i1.14010

Maulidianto, M., Tempo, N. F. R., & Haryanto, Y. D. (2023). Analisis kondisi atmosfer saat kejadian hujan es (Studi kasus: Kejadian hujan es tanggal 29 November 2023 di Kabupaten Timor Tengah Selatan). JFT: Jurnal Fisika dan Terapannya, 11(1). https://doi.org/10.24252/jft.v11i1.45152

Nugroho, A. D., & Fadlan, A. (2018). Analisis kejadian hujan es berdasarkan kondisi atmosfer dan citra satelit Himawari-8 (Studi kasus: Magelang, 24 Januari 2018). Prosiding Seminar Nasional Meteorologi Klimatologi dan Geofisika, STMKG. https://doi.org/10.24198/jiif.v2i2.19711

Paski, J. A. I., Permana, D. S., Sepriando, A., & Pertiwi, D. A. S. (2017). Analisis dinamika atmosfer kejadian hujan es memanfaatkan citra radar dan satelit Himawari-8 (Studi kasus: Tanggal 3 Mei 2017 di Kota Bandung). In Seminar Nasional Penginderaan Jauh.

Prasetyo, S., Abdilah, S., Nugraheni, I. R., & Sagita, N. (2022). Studi awan konvektif penyebab hujan es menggunakan radar cuaca Doppler single polarization di Bogor (23 September 2020). Jurnal Aplikasi Meteorologi, 1(1), 32-42. https://stmkg.balai2bmkg.id/index.php/jam/article/view/17

Ratnam, M. V., Santhi, Y. D., Rajeevan, M., & Rao, S. V. B. (2013). Diurnal variability of stability indices observed using radiosonde observations over a tropical station: Comparison with microwave radiometer measurements. Atmospheric Research, 124, 21–33. https://linkinghub.elsevier.com/retrieve/pii/S0169809512004371

Ryzhkov, A. V., Kumjian, M. R., Ganson, S. M., & Zhang, P. (2013). Polarimetric radar characteristics of melting hail. Journal of Applied Meteorology and Climatology, 52(10), 2291-2308. https://doi.org/10.1175/JAMC-D-12-0121.1

Sari, F. P., Manola, I., Tsiringakis, A., & Steeneveld, G. J. (2023). Understanding the role of sea surface temperature and urbanization on severe thunderstorms dynamics: A case study in Surabaya, Indonesia. Journal of Geophysical Research: Atmospheres, 128(17), e2023JD038817. https://doi.org/10.1029/2023JD038817

Singh, D. K., Yadav, R., KRISHNAN, K. S., & RAWAT, L. C. N. (2021). Analysis of three unusual severe weather events over Delhi during May-June, 2018 using Dual-Pol Doppler Weather Radar and GNSS data. MAUSAM, 72(4), 719-738. https://doi.org/10.54302/mausam.v72i4.3543

Stephens, G. L., Shiro, K. A., Hakuba, M. Z., Takahashi, H., Pilewskie, J. A., Andrews, T., & Wu, L. (2024). Tropical deep convection, cloud feedbacks and climate sensitivity. Surveys in Geophysics, 1-29. https://doi.org/10.1007/s10712-024-09831-1

Sulistiyono, W., Salsabil, N. H. S., & Ramadhan, S. A. (2024). Aplikasi produk radar C-band dalam identifikasi awan penghasil hujan es (Studi kasus: Bogor, 24 Januari 2022). GEOGRAPHIA: Jurnal Pendidikan dan Penelitian Geografi, 5(2), 137-143. https://doi.org/ 10.53682/gjppg.v5i2.8577

Surendran, U., Nagakumar, K. C. V., & Samuel, M. P. (2024). Remote sensing in precision agriculture. In Digital agriculture: A solution for sustainable food and nutritional security (pp. 201-223). Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-031-43548-5_7

Yang, H., Xia, R., Li, F., & Yu, B. (2025). Statistical characteristics, circulation patterns, and environmental features of severe convective wind events in Beijing. Atmospheric Research, 318, 107996. https://doi.org/10.1016/j.atmosres.2025.107996

Downloads

Published

2025-10-01

How to Cite

Rafi, R., Kuncoro, D., Arzhida, B., Jannah Indriyani, N., & Warjono, W. (2025). Identification of the causes of convective clouds in extreme rainfall events with hail based on dual-polar radar imagery. Jurnal Penelitian Saintek, 30(2), 58=73. https://doi.org/10.21831/jps.v30i2.89950

Issue

Section

Articles

Citation Check