Predicting Agricultural Product E-Commerce Usage Behavior In Indonesia With Machine Learning Algorithms
Downloads
This study aims to identify factors that predict the usage behavior of agricultural product e-commerce platform in Indonesia with a comprehensive approach using machine learning algorithms. The research model uses the theory of technology acceptance and use (UTAUT), which consists of variables of social influence, supporting conditions, usage behavior, performance expectancy, effort expectancy, behavioral intention, and supporting conditions. The data in this study were collected throuh an online survey. Model analysis uses a partial least square-structural equation model (PLS-SEM) approach. Furthermore, machine learning algorithms were used to analyze the relationship between elements in the research model. The results showed that behavioral intentions were predicted by performance expectations, effort expectations, social influence, and supporting factors. Agricultural product e-commerce usage behavior is influenced by these behavioral intentions. This study also emphasizes the importance of further research on the application of machine learning algorithms in predicting agricultural e-commerce consumption behavior.
Keywords: UTAUT; Machine Learning Algorithms; Agricultural Product e-commerce
ABSTRAK
Penelitian ini bertujuan untuk mengidentifikasi faktor-faktor yang memprediksi perilaku penggunaan platform e-commerce produk pertanian di Indonesia dengan pendekatan komprehensif menggunakan algoritma machine learning. Model penelitian menggunakan teori penerimaan dan penggunaan teknologi (UTAUT), yang terdiri dari variabel pengaruh sosial, kondisi pendukung, perilaku penggunaan, harapan kinerja, harapan usaha, niat perilaku, dan kondisi pendukung. Data dalam penelitian ini diperoleh melalui survei online. Analisis model menggunakan pendekatan partial partial least square-structural equation model (PLS-SEM). Lebih lanjut, algoritma machine learning digunakan untuk menganalisis hubungan antar elemen dalam model penelitian. Hasil penelitian menunjukkan bahwa niat perilaku diprediksi oleh ekspektasi kinerja, ekspektasi usaha, pengaruh sosial, dan faktor pendukung. Perilaku penggunaan platform e-commerce produk pertanian dipengaruhi oleh niat perilaku tersebut. Penelitian ini juga menekankan pentingnya penelitian lebih lanjut mengenai penerapan algoritma machine learning dalam memprediksi perilaku konsumsi e-commerce pertanian.
Kata Kunci: UTAUT, Algoritma Machine Learning, E-commerce Produk Pertanian
Alalwan. (2020). Mobile food ordering apps: An empirical study of the factors affecting customer e satisfaction and continued intention to reuse. Int J Inf Manage., 50, 28–44. https://doi.org/.doi:10.1016/j.ijinfomgt.2019.04.008.
Almaiah, M. A., Almomani, O., Al-Khasawneh, A., & Althunibat, A. (2021). Predicting the Acceptance of Mobile Learning Applications During COVID-19 Using Machine Learning Prediction Algorithms. In Studies in Systems, Decision and Control (Vol. 348, Issue March). Springer International Publishing. https://doi.org/10.1007/978-3-030-67716-9_20
Andrian, A., Anggraini, R., & Sugiarto, S. (2019). Analisis Karakteristik Responden Dan Atribut Perjalanan Terhadap Pemilihan Moda Angkutan Umum Rute Banda Aceh – Tapaktuan. Jurnal Arsip Rekayasa Sipil Dan Perencanaan, 2(4), 294–305. https://doi.org/10.24815/jarsp.v2i4.14946
Aprianto, I. G. L. A. (2022). Tinjauan Literatur: Penerimaan Teknologi Model UTAUT. KONSTELASI: Konvergensi Teknologi Dan Sistem Informasi, 2(1), 138–144. https://doi.org/10.24002/konstelasi.v2i1.5377
Arpaci, I., Al-Emran, M., Al-Sharafi, M. A., & Shaalan, K. (2021). A Novel Approach for Predicting the Adoption of Smartwatches Using Machine Learning Algorithms. In Studies in Systems, Decision and Control (Vol. 295, pp. 185–195). Springer. https://doi.org/10.1007/978-3-030-47411-9_10
BPS. (2022). Statistik e-commerce 2022.
Chen, L., Rashidin, M.S., Song, F., Wang, Y., Javed S, W. J. (2021). Determinants of Consumer’s Purchase Intention on Fresh E-Commerce Platform: Perspective of UTAUT Model. Sage Open, 11(2), 155–170. https://doi.org/doi:10.1177/21582440211027875.
Chin. (2010). “How to write up and report PLS analyses”, in Esposito Vinzi, V., Chin, W.W., Henseler, J. and Wang, H. (Eds), Handbook of Partial Least Squares: Concepts, Methods and Application”, Springer, Berlin, pp. 645-689.
Dhika. (2012). Metode Penelitian. 40–57.
Duan, Y., Goodell, J. W., Li, H., & Li, X. (2022). Assessing machine learning for forecasting economic risk: Evidence from an expanded Chinese financial information set. Finance Research Letters, 46(PA), 102273. https://doi.org/10.1016/j.frl.2021.102273
Fatihanisya, A. N. S., & Purnamasari, S. D. (2021). Penerapan Model Unified Theory Of Acceptence And Use Of Technology (UTAUT 2) Terhadap Perilaku Pelanggan E-Commerce Shopee Indonesia Di Kota Palembang. Journal of Information Systems and Informatics, 3(2), 392–417. https://doi.org/10.33557/journalisi.v3i2.143
Giandi O, Irawan I, A. R. (2020). Determinants of Behavior Intention and Use Behavior among Bukalapak’s Consumers. IPTEK The Journal for Technology and Science., 31(2), 158. https://doi.org/doi:10.12962/j20882033.v31i2.5585.
Google, Temasek, B. & Company. (2023). Reaching new heights: Navigating the path to profitable growth. E-Conomy SEA.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., Black, W. C., & Anderson, R. E. (2018). Multivariate Data Analysis. https://doi.org/10.1002/9781119409137.ch4
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. https://doi.org/10.2753/MTP1069-6679190202
Hair, Joseph F., G. Tomas M. Hult., Christian M. Ringle., and M. Sarstedt. 2. (2017). A Primer on Partial Least Squares Structural Equation Modelling (PLS-SEM).
Hair, Jr. J. F., Hult, G. T. M., Ringle, C. M., Rstedt, M. S., Hult, G. T. M., Ringle, C. M., & Rstedt, M. S. (2013). A Primer on Partial Least Squares Structural Equation Modeling. In Long Range Planning (Vol. 46, Issues 1–2). https://doi.org/10.1016/j.lrp.2013.01.002
Handayani, T., & Sudiana, S. (2017). Analisis Penerapan Model Utaut (Unified Theory of Acceptance and Use of Technology) Terhadap Perilaku Pengguna Sistem Informasi (Studi Kasus: Sistem Informasi Akademik Pada Sttnas Yogyakarta). Angkasa: Jurnal Ilmiah Bidang Teknologi, 7(2), 165. https://doi.org/10.28989/angkasa.v7i2.159
Haryono, S. (2017). Metode SEM Untuk Penelitian Manajemen dengan AMOS LISREL PLS. Luxima Metro Media.
Hormati, A. (2012). Pengujian Model Unified Theory of Acceptance and Use of Technology dalam Pemanfaatan Sistem Informasi Keuangan Daerah. Jurnal Akuntansi Multiparadigma JAMAL, 3(April), 1–24.
Indah, M., & Agustin, H. (2019). Penerapan Model Utaut (Unified Theory Of Acceptance And Use Of Technology) Untuk Memahami Niat Dan Perilaku Aktual Pengguna Go-Pay Di Kota Padang. Jurnal Eksplorasi Akuntansi, 1(4), 1949–1967. https://doi.org/10.24036/jea.v1i4.188
Kuadey, N.A, Mahama F, Ankora C, Bensah L, Maale, G.T, Agbesi, V.K, Kuadey AM, A. L. (2022). Predicting students’ continuance use of learning management system at a technical university using machine learning algorithms. Interactive Technology and Smart Education, 1(1). https://doi.org/doi:10.1108/ITSE-11-2021-0202.
Liu CH, Chen YT, Kittikowit S, Hongsuchon T, C. YJ. (2022). Using Unified Theory of Acceptance and Use of Technology to Evaluate the Impact of a Mobile Payment App on the Shopping Intention and Usage Behavior of Middle-Aged Customers. Front Psychol, 13(1), 55–76. https://doi.org/doi:10.3389/fpsyg.2022.830842.
Morosan, C., & DeFranco, A. (2016). It’s about time: Revisiting UTAUT2 to examine consumers’ intentions to use NFC mobile payments in hotels. International Journal of Hospitality Management, 53, 17–29. https://doi.org/10.1016/j.ijhm.2015.11.003
Musakwa, I. S., & Petersen, F. (2023). Factors affecting consumer acceptance and use of mobile delivery applications in South Africa. SA Journal of Information Management, 25(1). https://doi.org/10.4102/sajim.v25i1.1585
Mustaqim, R., Kusyanti, A., & Aryadita, H. (2018). Analisis Faktor-Faktor yang Memengaruhi Niat Penggunaan E-Commerce XYZ Menggunakan Model UTAUT. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(7), 2584–2593.
Naruetharadhol, P., Wongsaichia, S., Pienwisetkaew, T., Schrank, J., Chaiwongjarat, K., Thippawong, P., Khotsombat, T., & Ketkaew, C. (2023). Consumer Intention to Utilize an E-Commerce Platform for Imperfect Vegetables Based on Health-Consciousness. Foods, 12(6), 1166. https://doi.org/10.3390/foods12061166
Octaviani, R.D, Sucherly, Prabowo, H., & Sari, D. (2023). Determinants of Indonesian Gen Z’s purchase behavior on online travel platforms: Extending UTAUT model. Innovative Marketing, 19(4), 54–65. https://doi.org/10.21511/im.19(4).2023.05
Oliveira, T, Thomas, M, Baptista, G.C. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Comput Human Behav., 61, 404–414. https://doi.org/doi:10.1016/j.chb.2016.03.030.
Pitchay, A.A., Sukmana, R., Ratnasari, R.T. and Abd Jalil, M. I. (2023). A study of cash waqf contribution between millennials of Malaysia and Indonesia. International Journal of Islamic and Middle Eastern Finance and Management, 16(4), 802-818.
Pollák, F., Markovič, P., Vavrek, R., & Konečný, M. (2022). Return to the New Normal: Empirical Analysis of Changes in E-Consumer Behavior during the COVID-19 Pandemic. Behavioral Sciences, 12(3). https://doi.org/10.3390/bs12030085
Rustandi, A. A., Harniati, & Kusnadi, D. (2020). Jurnal Inovasi Penelitian. Jurnal Inovasi Penelitian, 1(3), 599–597.
Sa’adah, L., Martadani, L., & Taqiyuddin, A. (2021). Analisis Perbedaan Kinerja Karyawan Pada Pt Surya Indah Food Multirasa Jombang. Jurnal Inovasi Penelitian, 2(2), 515. https://doi.org/https://doi.org/10.47492/jip.v2i2.711
Samila, A.R, Shabrina NP, R. SA. (2022). Factors Affecting Behavioral Intention and Use Behavior of E-Commerce Users from Gen-Z Using UTAUT2 Model. International Conference on Information Management and Technology (ICIMTech)., 262–267.
Samsu (2017). Metode penelitian: teori dan aplikasi penelitian kualitatif, kuantitatif, mixed methods, serta research & development. In Diterbitkan oleh: Pusat Studi Agama dan Kemasyarakatan (PUSAKA).
Setiyani, L., Natalia, I., & Liswadi, G. T. (2023). Analysis of Behavioral Intentions of E-Commerce Shopee Users in Indonesia Using UTAUT2. ADI Journal on Recent Innovation (AJRI), 4(2), 160–171. https://doi.org/10.34306/ajri.v4i2.861
Shalihati, F., Jayawinangun, R., & Rahmatulloh, F. (2023). Customer Re-Use Model of Online Vegetables and Fruit Grocery Platform in Indonesia. Jurnal Manajemen Dan Agribisnis, November 2023. https://doi.org/10.17358/jma.20.3.500
Sholihin & Ratmono. (2020). Analisis SEM-PLS dengan WarpPLS 7.0 (C. Mitak, Ed.). Penerbit ANDI.
Slade, E. L., Dwivedi, Y. K., Piercy, N. C., & Williams, M. D. (2015). Modeling Consumers’ Adoption Intentions of Remote Mobile Payments in the United Kingdom: Extending UTAUT with Innovativeness, Risk, and Trust. Psychology & Marketing, 32(8), 860–873. https://doi.org/10.1002/mar.20823
Taiwo, A. A., & Downe, A. G. (2013). The theory of user acceptance and use of technology (UTAUT): A meta-analytic review of empirical findings. Journal of Theoretical and Applied Information Technology, 49(1), 48–58.
Tsai, C.-H., Zhu, D.-S., & Jang, Y.-M. (2013). A study on the consumer adoption behaviors of Internet Bank. 2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS), 263–268. https://doi.org/10.1109/ICIS.2013.6607852
Venkatesh, Thong, & Xu. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157. https://doi.org/10.2307/41410412
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly: Management Information Systems, 27(3), 425–478. https://doi.org/10.2307/30036540
Verkijika (2018). Factors influencing the adoption of mobile commerce applications in Cameroon. Telematics Informatics, 35(1), 1665-1674.
Wahyu, A. R. M., & Anwar, W. A. (2020). Management of Zakat at BAZNAS Regency Sidrap During COVID-19’s Pandemic. Jurnal Iqtisaduna, 1(1), 1. https://doi.org/10.24252/iqtisaduna.v1i1.15807
Witten, Frank, Eibe. (2005). Data Mining: Practical Machine Learning Tools and Techniques, Second Edition.
Zhang, J., & Gong, X. (2023). From clicks to change : The role of Internet use in fostering environmental sustainability awareness. Journal of Environmental Management, 348(777), 119275. https://doi.org/10.1016/j.jenvman.2023.119275
Zhang, M, Hassan H, M. M. (2023). Exploring the Consumers’ Purchase Intention on Online Community Group Buying Platform during Pandemic. Sustainability (Switzerland)., 15(3). https://doi.org/.doi:10.3390/su15032433.
Zhou T, Lu Y, W. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Comput Human Behav., 26(4), 760–767. https://doi.org/.doi:10.1016/j.chb.2010.01.013.
Copyright (c) 2025 Putra Irwandi, Rizki Oktavianto, Aulia Adetyaa, Sopan Sopian

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Nominal Barometer Riset Akuntansi dan Manajemen allows readers to read, download, copy, distribute, print, search, or link to its articles' full texts and allows readers to use them for any other lawful purpose. The journal allows the author(s) to hold the copyright without restrictions. Finally, the journal allows the author(s) to retain publishing rights without restrictions
- Authors are allowed to archive their submitted article in an open access repository
- Authors are allowed to archive the final published article in an open access repository with an acknowledgment of its initial publication in this journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Generic License.