Workshop on Visual Data Analysis with R Program
DOI:
https://doi.org/10.21831/jpmmp.v8i2.71583Keywords:
Visual Data Analysis, R Program, WorkshopAbstract
Statistics data analysis generally focuses more on mathematical procedures than visual. Visual analysis is very useful for research and this is still very limited to study at Universitas Mercu Buana Yogyakarta, so the UNY Statistics lecturer's service activity is holding visual data analysis workshop with the R program, where this program is open source and is complete for visual analysis. The material for this activity is about procedures and uses for visual data analysis, introduction to the R program, data management with the R program, visual data analysis for group descriptions and comparisons, and visual data analysis for relationships between variables. Evaluation of participants' ability to understand the material is measured through 14 questions with four Likert Scale responses. Based on 40 questionnaires, 27,86% answered "Strongly Agree", 71,96% "Agree", and 0,18% "Disagree" regarding understanding and applying visual data analysis techniques with the R program. Therefore, it can be concluded that the majority of participants could understand the workshop material and follow the training well.
References
Arnold, J. (2021). ggthemes: Extra themes, scales and geoms for 'ggplot2'. R package version 4.2.4,<https://CRAN.R-project.org/package=ggthemes>.
Boehmke, C. B. (2016). Data Wrangling with R. Springer.
Donoho, D. (2017). 50 years of data science. Journal of Computational and Graphical Statistics, 26(4),745-766. https://doi.org/10.1080/10618600.2017.1384734
Erickson, B. H., Nosanchuk, T. A. (1981). Memahami data: statistika untuk ilmu sosial (Terjemahan oleh Sembiring, R.K., dan Malo, M). Jakarta, LP3ES.
Grolemund, G., Wickham, H. (2011). Dates and times made easy with lubridate. Journal of Statistical Software, 40(3), 1-25. URL https://www.jstatsoft.org/v40/i03/.
Hehman, E., Xie S. Y. (2021). Doing Better Data Visualization. Advances in Methods and Practices in Psychological Science, 4(4). doi:10.1177/25152459211045334
Kandel, S., Heer, J., Plaisant, C., Kennedy, J., Ham, F. v., Richie, N. H., Buono, P. (2011). Research directions in data wrangling: Visualizations and transformations for usable and credible data. Information Visualization, 10(4), 271-288. DOI: https://doi.org/10.1177/1473871611415994
Khan, N., Yaqoob, I., Hashem, I. A. T., Inayat, Z., Ali, M., Kamaleldin, W., & Gani, A. (2014). Big data: survey, technologies, opportunities, and challenges. The Scientific World Journal, 2014. DOI: https://doi.org/10.1155/2014/712826
Midway, S. R. (2020). Principles of Effective Data Visualization. Patterns, 1(9). https://doi.org/10.1016/j.patter.2020.100141.
Onwuegbuzie, A. J., & Wilson, V. A. (2003). Statistics Anxiety: Nature, etiology, antecedents, effects,and treatments--a comprehensive review of the literature. Teaching in higher education, 8(2),195-209.https://doi.org/10.1080/1356251032000052447
Pebesma, E. (2018). Simple features for R: Standardized support for spatial vector data. The R Journal, 10 (1), 439-446, https://doi.org/10.32614/RJ-2018-009
R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Setiawan, E. P. (2019). Analisis muatan literasi statistika dalam buku teks matematika Kurikulum 2013. Pythagoras: Jurnal Matematika dan Pendidikan Matematika, 14(2), 163-177. https://doi.org/10.21831/pg.v14i2.28558
Setiawan, E.P. & Sukoco, H. (2021). Exploring first year university students' statistical literacy: a case on describing and visualizing data. Journal on Mathematics Education, 12(3), 427-448. http://doi.org/10.22342/jme.12.3.13202.427-448
Signorell, A. et mult. al. (2022). DescTools: Tools for descriptive statistics. R package version 0.99.47.
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag.
Wickham, H., Franí§ois, R., Henry, L., & Mí¼ller, K. (2022). dplyr: A grammar of data manipulation. R package version 1.0.10, <https://CRAN.R-project.org/package=dplyr>.
Yaqoob, I., Hashem, I. A. T., Gani, A., Mokhtar, S., Ahmed, E., Anuar, N. B., and Vasilakos, A. V.(2016). Big data: From beginning to future. International Journal of Information Management, 36(6), 1231-1247. https://doi.org/10.1016/j.ijinfomgt.2016.07.009
Yusuf, Y., Suyitno, H., & Sukestiyarno, Y. L. (2019). The influence of statistical anxiety on statistic reasoning of pre-service mathematics teachers. Bolema: Boletim de Educaí§í£o Matemática, 33, 694-706. https://doi.org/10.1590/1980-4415v33n64a12
Downloads
Published
How to Cite
Issue
Section
License
In order to be accepted and published by Jurnal Pengabdian Masyarakat MIPA dan Pendidikan MIPA, author(s) submitting the article manuscript should complete all the review stages. By submitting the manuscript the author(s) agreed to these following terms:
1. The copyright of accepted articles shall be assigned to Jurnal Pengabdian Masyarakat MIPA dan Pendidikan MIPA.
2. Authors are permitted to disseminate published article by sharing the link/DOI of the article at Jurnal Pengabdian Masyarakat MIPA dan Pendidikan MIPA. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from Jurnal Pengabdian Masyarakat MIPA dan Pendidikan MIPA with an acknowledgement of initial publication to this journal.
3. Users/public use of the articles published by this journal will be licensed to Creative Commons Attribution 4.0 International License.