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 The dihedral group is a mathematical structure generated by rotational 
and reflection symmetries. In this study, the representation of the group 
is described using a power graph, where all elements of the group are 
treated as vertices, and two distinct elements are considered adjacent 
when one is a power of the other. By analyzing the structural patterns of 
the resulting power graphs, various connectivity indices can be 
determined, particularly for dihedral groups whose orders are powers of 
a prime number. This research focuses on six specific connectivity 
indices: the first Zagreb index, the second Zagreb index, the Wiener index, 
the hyper-Wiener index, the Harary index, and the Szeged index. The 
significance of this study lies in showing how algebraic structures can be 
translated into graph-theoretical frameworks, providing deeper insights 
into both mathematical theory and potential applications in network 
science. 
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 Introduction 

One way to understand groups is by representing them using graphs. This line of research was 
first introduced by Arthur Cayley in 1843, and the resulting graphs are now known as Cayley graphs. 
Cayley defined the representation of a group 𝐺 on a graph by viewing all elements in the group as 
vertices, and an element is connected if there is a 𝑥, 𝑦 ∈ 𝐺 is connected if there exists 𝑎 ∈ 𝐴 ⊂ 𝐺 such 
that 𝑥𝑎 = 𝑦. Research progresses by changing the group object to a subgroup as in (Luo et al., 2011) 
and (Assari & Hosseinzadeh, 2013). Further research on group representation in graphs is then 
carried out by changing the definition of adjacency such as the power graph. (A. V. Kelarev & Quinn, 
2000), element oder graph (Munandar, 2022a) and coprime graph (Ma et al., 2014). 

The concept of representing groups through power graphs of a finite group 𝐺 (denoted by Γ(𝐺) 
was first introduced by in (A. V. Kelarev & Quinn, 2000). In this definition, the elements of 𝐺 are 
represented as vertices, and two elements 𝑎, 𝑏 ∈ 𝐺 are adjacent if there exists a natural number 𝑘 
such that 𝑎𝑘 = 𝑏. Under this definition, the resulting graph is directed since 𝑎 being adjacent to 𝑏 does 
not necessarily imply that 𝑏 is adjacent to 𝑎. The research was then carried out on the structure of 
semigroups (A. V. Kelarev & Quinn, 2002) and developed in (A. V. Kelarev & Quinn, 2004) by looking 

at the combinatoric properties that arise from the graph. 
Motivated by the work of Kelarev and Quinn, Chakrabarty et al. (Chakrabarty et al., 2009) 

developed power graphs on semigroups and cyclic groups where the graphs are undirected. The 
graph is undirected, because Chakrabarty defines the element connectivity in the power graph as 
follows: for any 𝑎, 𝑏 ∈ 𝐺, vertex 𝑎 adjacent to 𝑏 if and only if 𝑎 ≠ 𝑏 and 𝑎𝑘 = 𝑏 or 𝑎 = 𝑏𝑘  for a natural 
number 𝑘. Some researches that develop power graph version of undirected graph on finite groups 
can be found in the following studies (Cameron, 2010), (Cameron & Ghosh, 2011) and (Ali et al., 
2022). While the discussion of the power graph on the torsion-free group was presented in (Cameron 
et al., 2019). Research from (Cameron & Jafari, 2020) discusses the connectivity of power graphs on 
certain groups. 
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On the other hand, graphs are known as a theory that can be applied in many fields. One of them 

is in the field of chemistry which is related to the connectivity index. Connectivity index can be used 

as a descriptor of chemical molecules that are calculated based on the graph of the chemical 

compound formed. There are several types of connectivity indices that are interesting to discuss 

including hyper-Wiener, Harary, first Zagreb, second Zagreb, and Szeged. Some of these indices can 

be used to analyze the chemical structure formed from the graph. (N.Trianjstic, 1987), and can also 

be used to analyze the chemical properties of paraffin (Wiener, 1947). The discussion about the 

connectivity index of the group on the graph is done in (Zahidah et al., 2021)In this research, the 

connectivity index of the coprime graph on the dihedral group for 𝑛 = 2𝑘  and 𝑛 = 𝑝 with 𝑝 are prime 

numbers. This research will discuss the connectivity index of the power graph over the dihedral 

group for order 𝑛 = 𝑝𝑘 with 𝑝 prime numbers. The importance of this study lies in bridging group 

theory and graph theory through connectivity indices, providing not only theoretical contributions 

to algebra and discrete mathematics but also potential applications in chemistry, network analysis, 

and related interdisciplinary fields. 

Methods 

The study was conducted by looking at the patterns that appear on the power graph over the 
dihedral group for order 𝑛 = 𝑝𝑘 with 𝑝 prime numbers. The discussion starts by looking at some 
things related to graphs and basic results about dihedral groups. Terminology related to graphs is 
taken from (Munandar, 2022b), and for the sake of the integrity of this article, some definitions that 
are needed in the following discussion are given below: 

Definition 2.1 (J. Gallian, 2021). The dihedral group denoted 𝐷2𝑛 is 

𝐷2𝑛 =< 𝑎, 𝑏|𝑎𝑛 = 𝑏2 = 𝑒, 𝑏−1𝑎𝑏 = 𝑎−1 >. 

Base on (Febriantono et al., 2024), the order of each element in the dihedral group is as follows 

𝑜(𝑎𝑖𝑏𝑗) = {

𝑛

𝑔𝑐𝑑(𝑖, 2𝑛)
, 𝑗 = 0

2          , 𝑗 = 1
 

This study investigates the connectivity indices of coprime graphs over generalized quaternion 
groups. The indices considered in this research include the First Zagreb Index, Second Zagreb Index, 
Wiener Index, Hyper-Wiener Index, Harary Index, and Szeged Index. The definitions of these six 
indices are presented as follows. 

Definition 2.2 (Das et al., 2015) Given a simple connected graph 𝛤. The First Zagreb index over 𝛤 
denoted by 𝑀1(𝛤) is defined as follows  

𝑀1(Γ) =  ∑ deg (𝑣)2

𝑣∈𝑉 (Γ)

 

with 𝑑𝑒𝑔(𝑣) is the vertex degree 𝑣 which is the number of edges incident to 𝑣. 

Definition 2.3 (Das et al., 2015) Given a simple connected graph 𝛤. The Second Zagreb index over 𝛤 
denoted by 𝑀2(𝛤) is defined as follows  

𝑀2(Γ)  = ∑ 𝑑𝑒𝑔(𝑢) 𝑑𝑒𝑔(𝑣)

𝑢𝑣∈𝐸(Γ)

  

where 𝑑𝑒𝑔(𝑣) is the vertex degree 𝑣. 
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Definition 2.4 (Dobrynin et al., 2001) Given a simple connected graph 𝛤. The Wiener index over 𝛤 
denoted by 𝑊(𝛤) is defined as follows  

𝑊(𝛤) = ∑ 𝑑(𝑢, 𝑣)

𝑢,𝑣∈𝑉 (𝛤)

  

with 𝑑(𝑢, 𝑣) is the distance between vertices 𝑢 and 𝑣 is the number of edges in the shortest path 
connecting 𝑢 and 𝑣. 

Definition 2.5 (Yu et al., 2019) Given a simple connected graph 𝛤. The hyper-Wiener index over 𝛤 
denoted by 𝑊𝑊(𝛤) is defined as follows 

𝑊𝑊(𝛤) =
1

2
(𝑊(𝛤) + ∑ 𝑑(𝑢, 𝑣)2

𝑢,𝑣∈𝑉 (𝛤)

) 

where 𝑑(𝑢, 𝑣) is the distance between vertices 𝑢 and 𝑣. 

Definition 2.6 (Xu & Das, 2011) Given a simple connected graph 𝛤. The Harary index over 𝛤 denoted 
by 𝐻(𝛤) is defined as follows 

𝐻(𝛤) = ∑
1

𝑑(𝑢, 𝑣)
𝑢,𝑣∈𝑉 (𝛤)

 

where 𝑑(𝑢, 𝑣) is the distance between vertices 𝑢 and 𝑣. 

Definition 2.7 (Das & Gutman, 2009) Given a simple connected graph 𝛤 and 𝑒 is an edge in 𝛤. The 
Szeged index in 𝛤 denoted by 𝑆𝑧(𝛤) is defined as follows 

𝑆𝑧(𝛤) = ∑ |𝑁1(𝑒|𝛤)||𝑁2(𝑒|𝛤)|

𝑒∈𝐸(𝛤)

, 

where 𝑁1(𝑒|𝛤)  =  {𝑤 ∈  𝑉 (𝛤)|𝑑(𝑤, 𝑢)  <  𝑑(𝑤, 𝑣)} and 𝑁2(𝑒|𝛤)  =  {𝑤 ∈  𝑉 (𝛤)|𝑑(𝑤, 𝑣)  <
 𝑑(𝑤, 𝑢)}. 

 

Results and Discussion 

The discussion is organized into two parts: the first part examines the patterns that emerge in 

the power graph of the dihedral group 𝐷2𝑛 for 𝑛 = 𝑝𝑘 with 𝑝 being a prime number, while the second 

part analyzes the connectivity indices of the graph.  

1.1 Power Graph over Dihedral Group 

The first result to be presented in this article is the power graph formed over the dihedral group. 

Before discussing this further, the definition of power graph is first given.  

Definition 3.1 (Chakrabarty et al., 2009) Suppose 𝐺 is a group and 𝑎, 𝑏 ∈ 𝐺. The power graph of 𝐺 

(denoted 𝛤(𝐺)) is a graph consisting of the set of vertices which are elements in the group, and the 

vertices are 𝑎, 𝑏 ∈ 𝐺 are mutually adjecent if and only if there exists a natural number 𝑛 such that 𝑎𝑛 =

𝑏 or 𝑎 = 𝑏𝑛 .  

We start our discussion by looking at the patterns that emerge in power graphs over dihedral 

groups. The following example can illustrate the power graph formed over dihedral group.  



p-ISSN 2085-9872  J.Sains Dasar 
e-ISSN 2443-1273 

 

 
Arif Munandar                                                                                                                                                                             17 

 
 

Example 3.2. Given a dihedral group 𝐷8 = {𝑒, 𝑎, 𝑎2, 𝑎3, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏}. The power graph of the 

group is as follows 

 

Figure 1. Power graph of the group 𝐷8 

As the example of power graph above, in the case of 𝑛 = 4 = 22, the power graph formed 

consists of 2 mutually disjoined subgraphs. If the set of elements 𝑆 = {𝑒, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏} then a 

subgraph in the form of a star graph is formed, while if the set of elements is chosen {𝑎, 𝑎2, 𝑎3}, then 

a subgraph is formed 𝐾3 . The picture that emerges in the example can be generalized for any 𝑛 = 𝑝𝑘 

with 𝑝 is a prime number and 𝑘 natural numbers as follows   

Theorem 3.3. Given a dihedral group 𝐷2𝑛 with 𝑛 = 𝑝𝑘 for a prime number 𝑝 and a natural number 𝑘. 

The power graph of the dihedral group forms two disjoint subgraphs, where the first subgraph forms a 

star graph while the other subgraph is a complete graph. 𝑆𝑛+1 while the other subgraph is a complete 

graph. 𝐾𝑛−1.  

Proof. Based on Theorem 8, the order element of the dihedral group is of the form 𝑎𝑖𝑏 for 𝑖 =

0, … , 𝑛 − 1 is 2, thus each of these elements is only adjacent to the element 𝑒. As a result, the set 

{𝑒, 𝑎𝑖𝑏|𝑖 = 0,1,2 … , 𝑛 − 1} forms the graph 𝑆𝑛+1 . Then the element in the dihedral group constructed 

by 𝑎, call it 𝐷 = {𝑎, 𝑎2, . . , 𝑎𝑛−1, 𝑒} form a cyclic group with order 𝑛 = 𝑝𝑘. Based on the result of 

(Chakrabarty et al., 2009), the power graph of 𝐷 forms a complete graph 𝐾𝑛, then if the vertex 𝑒 is 

removed from the set 𝐷, then the resulting complete graph becomes 𝐾𝑛−1.   

Through the result in the Theorem above, we can detail each degree that arises from each 

vertex formed in the power graph over the dihedral group for 𝑛 = 𝑝𝑘. The theorem related to this is 

written in (Nurhabibah et al., 2021)We rewrite it with a different proof as follows.  

Theorem 3.4. Given a dihedral group 𝐷2𝑛 . If 𝑛 = 𝑝𝑘 for a prime number 𝑝 and a natural number 𝑘, 

then the degree of each vertex in 𝛤(𝐷2𝑛) is as follows 

𝑑𝑒𝑟(𝑎𝑗) = 𝑛 − 1, 𝑑𝑒𝑟(𝑎𝑖𝑏) = 1, 𝑑𝑒𝑟(𝑒) = 2𝑛 − 1. 

Proof. It is obvious by looking at the disjoined subgraphs formed, as stated in Theorem 3.3.   

As the theorem written above, the power graph over the dihedral group for the 𝑛 = 𝑝𝑘 forms 

two disjoint subgraphs, where the first subgraph is a star graph and the other subgraph is a complete 

graph. In general, the vertices in the formed graph can be partitioned into  

𝑉(𝛤𝐷2𝑛
) = 𝑃0 ∪ 𝑃1 ∪ 𝑃2 
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Where 

𝑃0 = {𝑒} 

𝑃1 = {𝑎𝑗|𝑗 = 1,2, . . 𝑛 − 1} 

𝑃2 = {𝑎𝑖𝑏|𝑖 = 0,1, … , 𝑛 − 1 } 

Then the edges of the formed power graph can be partitioned into  

𝐸(Γ𝑄2𝑛
) = {[𝑎] ∪ [𝑏] ∪ [𝑐]} 

Where 

[𝑎] = {𝑒𝑎𝑗|𝑗 = 1,2,3 … 𝑛 − 1} 

[𝑏] = {𝑒𝑎𝑖𝑏|𝑖 = 0,2, … , 𝑛 − 1} 

[𝑐] = {𝑎𝑖𝑎𝑗|𝑖, 𝑗 = 1,2, … , 𝑛 − 1, 𝑖 ≠ 𝑗} 

 

3.2.  Connectivity Index of Power Graph over Dihedral Group for order 𝒏 = 𝒑𝒌 

 

Using the vertex and edge patterns that appear above, we can find the connectivity indices of the 

power graph of the dihedral group for 𝑛 = 𝑝𝑘 with 𝑝 is a prime number. The analysis of the 

connectivity indices starts by looking at the first Zagreb Index involving the degree of each vertex as 

follows 

 

Theorem 3.5 Given a power graph 𝛤 over the dihedral group 𝐷2𝑛. If 𝑛 = 𝑝𝑘 with 𝑝 is a prime number, 

then the First Zagreb index over 𝛤𝐷2𝑛  is 

𝑀1(𝛤𝐷2𝑛
)  = 𝑛3 + 𝑛2. 

Proof. Given 𝑛 = 𝑝𝑘 with 𝑝 is a prime number. The degree of each vertex formed in the power graph 

has been written in Theorem 3.4, following this result, the first Zagreb Index is as follows 

𝑀1(Γ𝐷2𝑛
) = ∑ (deg(𝑣))2

𝑣∈𝑉(𝛤𝐷2𝑛
)

= deg(𝑒)2 + ∑ deg(𝑣)2

𝑣∈𝑃1

+ ∑ deg(𝑣)2

𝑣∈𝑃2

= (2𝑛 − 1)2 + (𝑛 − 1)(𝑛 − 1)2 + 𝑛(1)2

= 4𝑛2 − 4𝑛 + 1 + 𝑛3 − 3𝑛2 + 3𝑛 − 1 + 𝑛 

= 𝑛3 + 𝑛2  

Thus, the First Zagreb Index of 𝛤𝐷2𝑛
 with 𝑛 = 𝑝𝑘 where 𝑝 is a prime number is 𝑛3 + 𝑛2 . ∎ 

 

The next index investigated is the second Zagareb Index whose calculation involves 

multiplying the degrees of the connected vertices, so the result of Theorem 3.4 is needed again in this 

calculation.   
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Theorem 3.6. Given a power graph 𝛤 over dihedral group 𝑄4𝑛. If 𝑛 = 𝑝𝑘 with 𝑝 are prime numbers and 

𝑘 a natural number, then the Second Zagreb index over 𝛤𝑄4𝑛
 is 

𝑀2(𝛤𝐷2𝑛
) =  

𝑛4 − 𝑛3 + 3𝑛2 − 𝑛

2
. 

Proof. Given 𝑛 = 𝑝𝑘 with 𝑝 is a prime number. Based on Theorem 3.4, we get 

𝑀2(Γ𝐷2𝑛
) = ∑ deg(𝑢) deg(𝑣)

𝑢𝑣∈𝐸(Γ𝐷2𝑛
)

= ∑ deg(𝑒) deg(𝑢)

𝑢∈𝑃1

+ ∑ deg(𝑒) deg(𝑢)

𝑢∈𝑃2

+ ∑ deg(𝑢) deg(𝑣)

𝑢𝑣∈[𝑐]

= (𝑛 − 1)(2𝑛 − 1)(𝑛 − 1) + 𝑛(2𝑛 − 1) + ((
𝑛

2
) − (𝑛 − 1)) (𝑛 − 1)2

= (2𝑛3 − 5𝑛2 + 4𝑛 − 1) + (2𝑛2 − 𝑛) +
(𝑛4 − 5𝑛3 + 9𝑛2 − 7𝑛 + 2)

2

=
𝑛4 − 𝑛3 + 3𝑛2 − 𝑛

2
  

So the Second Zagreb Index over 𝛤𝐷2𝑛
 for 𝑛 = 𝑝𝑘is 

𝑛4−𝑛3+3𝑛2−𝑛

2
. ∎ 

 

Theorem 3.7. Given a power graph 𝛤 over dihedral group 𝐷2𝑛. The Wiener index of 𝛤𝑄4𝑛
 is 

𝑊(𝛤𝐷2𝑛
) =

7𝑛2 − 5𝑛

2
, 

with 𝑛 = 𝑝𝑘 and 𝑝 are prime numbers. 

Proof. Given 𝑛 = 𝑝𝑘 with 𝑝 is a prime number, we get 

𝑊(Γ𝐷2𝑛
) = ∑ 𝑑(𝑢, 𝑣)

𝑢,𝑣∈𝑉(Γ 𝐷2𝑛
)

= ∑ 𝑑(𝑒, 𝑣)

𝑣∈𝑉(Γ𝐷2𝑛
)−{𝑒}

+ ∑ 𝑑(𝑢, 𝑣)

𝑢𝑣∈[𝑐]

+ ∑ 𝑑(𝑢, 𝑣)

𝑢∈𝑃1,𝑣∈𝑃2

+ ∑ 𝑑(𝑢, 𝑣)

𝑢,𝑣∈𝑃2

= (2𝑛 − 1) + ((
𝑛

2
) − (𝑛 − 1)) + 𝑛(𝑛 − 1)(2) + (

𝑛

2
) 2

= (2𝑛 − 1) +
(𝑛 − 1)(𝑛 − 2)

2
+ 2(𝑛2 − 𝑛) + 𝑛2 − 𝑛 =

7𝑛2 − 5𝑛

2
. 

So the Wiener Index of 𝛤𝐷2𝑛
 with 𝑛 = 𝑝𝑘 is 

7𝑛2−5𝑛

2
. ∎ 

 

Theorem 3.8. Given a power graph 𝛤 over the dihedral group . The hyper-Wiener index over the group 

is 

𝑊𝑊(𝛤𝐷2𝑛
) = 5𝑛2 − 4𝑛, 

with 𝑛 = 𝑝𝑘 and 𝑝 are prime numbers. 

Proof. Given 𝑛 = 𝑝𝑘 with 𝑝 is a prime number. Let us first determine the sum of squared distances 

between two vertices in Γ𝐷2𝑛
, as follows 
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∑ 𝑑(𝑢, 𝑣)

𝑢,𝑣∈𝑉(Γ 𝐷2𝑛
)

2

= ∑ 𝑑(𝑒, 𝑣)2

𝑣∈𝑉(Γ𝐷2𝑛
)−{𝑒}

+ ∑ 𝑑(𝑢, 𝑣)2

𝑢𝑣∈[𝑐]

+ ∑ 𝑑(𝑢, 𝑣)2 + ∑ 𝑑(𝑢, 𝑣)2

𝑢,𝑣∈𝑃2𝑢∈𝑃1,𝑣∈𝑃2

= (2𝑛 − 1)12 + ((
𝑛

2
) − (𝑛 − 1)) 12 + 𝑛(𝑛 − 1)(22) + (

𝑛

2
) (22)

= (2𝑛 − 1) +
(𝑛 − 1)(𝑛 − 2)

2
+ 4(𝑛2 − 𝑛) + 2(𝑛2 − 𝑛) =

13𝑛2 − 11𝑛

2
. 

Based on Theorem 3.7, we obtain 

𝑊𝑊(Γ 𝑄4𝑛
) =

1

2
(𝑊(Γ 𝑄4𝑛

) + ∑ (𝑑(𝑢, 𝑣))
2

𝑢,𝑣∈𝑉(Γ 𝑄4𝑛
)

) =
1

2
(

7𝑛2 − 5𝑛

2
+

13𝑛2 − 11𝑛

2
)

=
1

2
(10𝑛2 − 8𝑛) = 5𝑛2 − 4𝑛. 

Thus, the hyper-Wiener index over 𝛤𝐷2𝑛
 with 𝑛 = 𝑝𝑘 where 𝑝 is a prime number is  5𝑛2 − 4𝑛. ∎ 

 

Theorem 3.9. Given a power graph 𝛤 over dihedral group 𝑄4𝑛. The Harary index of 𝛤 𝑄4𝑛
 is 

𝐻(𝛤𝐷2𝑛
) =

5𝑛2 − 𝑛

4
, 

with 𝑛 = 𝑝𝑘 and 𝑝 are prime numbers. 

Proof. It is known that the Harary Index is the sum of the inverse of the distances between two 

vertices in the 𝛤𝑄4𝑛
.  Utilizing the result in Theorem 3.7, the Harary Index is obtained as follows 

𝐻(Γ𝐷2𝑛
) = ∑

1

𝑑(𝑢, 𝑣)
𝑢,𝑣∈𝑉(Γ 𝐷2𝑛

)

= ∑
1

𝑑(𝑒, 𝑣)
𝑣∈𝑉(Γ𝐷2𝑛

)−{𝑒}

+ ∑
1

𝑑(𝑢, 𝑣)
𝑢𝑣∈[𝑐]

+ ∑
1

𝑑(𝑢, 𝑣)
+ ∑

1

𝑑(𝑢, 𝑣)
𝑢,𝑣∈𝑃2𝑢∈𝑃1,𝑣∈𝑃2

= (2𝑛 − 1) + ((
𝑛

2
) − (𝑛 − 1)) + 𝑛(𝑛 − 1) (

1

2
) + (

𝑛

2
) (

1

2
)  

= (2𝑛 − 1) +
(𝑛 − 1)(𝑛 − 2)

2
+

𝑛2 − 𝑛

2
+

𝑛(𝑛 − 1)

4
=

5𝑛2 − 𝑛

4
. 

Thus, the Harary Index of 𝛤𝐷2𝑛
 with 𝑛 = 𝑝𝑘 where 𝑝 is a prime number is 

5𝑛2−𝑛

4
. ∎ 

 

Theorem 3.10. Given a power graph 𝛤𝐷2𝑛
 over the dihedral group. If 𝑛 = 𝑝𝑘 with 𝑝 is a prime number, 

then the Szeged index of 𝛤𝐷2𝑛
 is 

𝑆𝑧(𝛤𝐷2𝑛
) = 0. 

Proof. Given 𝑛 = 𝑝𝑘 where 𝑝 is a prime number. It is observed that 

1. Edge [𝑎] = {𝑒𝑎𝑗|𝑗 = 1,2,3 … 𝑛 − 1}  

𝑁1(𝑎|Γ𝐷2𝑛
) = {𝑢 ∈ 𝑉(Γ𝐷2𝑛

)|𝑑(𝑢, 𝑒) < 𝑑(𝑢, 𝑎𝑗)} = {𝑎𝑖𝑏} = 𝑃2, 

𝑁2(𝑎|Γ𝐷2𝑛
) = {𝑢 ∈ 𝑉(Γ𝐷2𝑛

)|𝑑(𝑢, 𝑎𝑗) < 𝑑(𝑢, 𝑒)} = ∅ , 

so that 𝑁1(𝑎|Γ𝐷2𝑛
) = 𝑛, and 𝑁2(𝑎|Γ𝐷2𝑛

) = 0. 

2. Edge [𝑏] = {𝑒𝑎𝑖𝑏|𝑖 = 0,1,2, … 𝑛 − 1} 

𝑁1(𝑏|Γ𝐷2𝑛
) = {𝑢 ∈ 𝑉(Γ𝐷2𝑛

)|𝑑(𝑢, 𝑒) < 𝑑(𝑢, 𝑎𝑖𝑏)} = 𝑃1 = {𝑎𝑗} 

𝑁2(𝑏|Γ𝐷2𝑛
) = {𝑢 ∈ 𝑉(Γ𝐷2𝑛

)|𝑑(𝑢, 𝑎𝑖𝑏) < 𝑑(𝑢, 𝑒)} = ∅, 
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so 𝑁1(𝑏|Γ𝐷2𝑛
) = 𝑛 − 1 and 𝑁2(𝑏|Γ𝐷2𝑛

) = 0. 

3. Edge [𝑐] = {𝑎𝑖𝑎𝑗|𝑖, 𝑗 = 1,2, … , 𝑛 − 1}  

𝑁1(𝑐|Γ𝐷2𝑛
) = {𝑢 ∈ 𝑉(Γ𝐷2𝑛

)|𝑑(𝑢, 𝑎𝑖) < 𝑑(𝑢, 𝑎𝑗)} = ∅ 

𝑁2(𝑐|Γ𝐷2𝑛
) = {𝑢 ∈ 𝑉(Γ𝐷2𝑛

)|𝑑(𝑢, 𝑎𝑗) < 𝑑(𝑢, 𝑎𝑖)} = ∅, 

so 𝑁1(𝑐|Γ𝐷2𝑛
) = 0 and 𝑁2(𝑐|Γ𝐷2𝑛

) = 0. 

Based on the explanation above, the Szeged Index of the graph is as follows 

𝑆𝑧(Γ𝐷2𝑛
) = ∑ |𝑁1(𝑢|Γ𝐷2𝑛

)|

𝑢∈𝐸(Γ 𝑄4𝑛
)

|𝑁2(𝑢|Γ𝐷2𝑛
)|

= |𝑁1(𝑎|Γ𝐷2𝑛
)||𝑁2(𝑎|Γ𝐷2𝑛

)| + ∑ |𝑁1(𝑏|Γ𝐷2𝑛
)||𝑁2(𝑏|Γ𝐷2𝑛

)|

𝑏∈[𝑏] 

+ ∑ |𝑁1(𝑐|Γ𝐷2𝑛
)||𝑁2(𝑐|Γ𝐷2𝑛

)|

𝑐∈[𝑐] 

+= 𝑛. 0 + 0 (𝑛 − 1) + 0.0 = 0. 

So the Szeged Index of Γ𝐷2𝑛
 with 𝑛 = 𝑝𝑘 is 0. ∎  

Overall, the discussion has provided a deeper understanding of how power graphs 
constructed from dihedral groups can reveal significant structural characteristics when examined 
through the lens of connectivity indices. In particular, the six indices considered in this study—the 
First Zagreb, Second Zagreb, Wiener, Hyper-Wiener, Harary, and Szeged—serve as essential tools for 
interpreting the relationship between group elements and the graphical structures they form. Their 
combined analysis highlights the rich interaction between algebraic properties and graph invariants, 
reinforcing the theoretical foundation of this research while also pointing to broader possibilities for 
interdisciplinary applications. 

 

Conclusion  

Six connectivity indices, namely the First Zagreb Index, Second Zagreb Index, Wiener Index, 
Hyper-Wiener Index, Harary Index, and Szeged Index, can be found on power graphs over the 
dihedral group for the order of 𝑛 = 𝑝𝑘. These indices are determined by observing the patterns that 
appear in the graph formed for that order. For future research, these methods can be extended to 
other classes of groups or to different types of graph invariants to reveal broader structural 
properties. 
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