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Abstract 

 
The purpose of this research is to develop the teleconnection model of Niño 3.4 and IOD anomalies which can be 

used as reference to explain precipitation anomalies. El-Niño and IOD cycles are shown as the warming process of sea surface 

temperatures where for El-Niño is in the Pacific Ocean and IOD is in the Indian Ocean and each of them forms a cycle over 

a certain period of time. The method used to determine the dominant oscillation of the teleconnection of Niño 3.4 and IOD 

anomalies is Power Spectral Density (PSD), and to model the teleconnection of Niño 3.4 and IOD anomalies is ARIMA 

(Autoregressive Integrated Moving Average). The data used are Niño 3.4 index which is one type of index for El-Niño and 

IOD index. The results are Power Spectral Density (PSD) graphs for the teleconnection of Niño 3.4 and IOD anomalies which 

oscillates around 5 years. By the ARIMA method, the approximate model for the data of teleconnection of Niño 3.4 and IOD 

is ARIMA (1,1,2) with equation of Zt = 1.516  Zt-1 - 0.516 Zt-2 - 0.256 at-1 + 0.021 at-2. 
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Introduction 

El Niño–Southern Oscillation (ENSO) and 

Indian Ocean Dipole (IOD) are parts of a global 

phenomenon that also affects the condition of 

rainfall. ENSO is a climate phenomenon with area 

of origin is in the Pacific Ocean but has far-reaching 

consequences for weather around the world, and is 

particularly associated with droughts and floods 

[1]. There are several indices used to monitor the 

tropical Pacific region, all of them are based on 

anomalies of mean sea surface temperature in a 

given region. The Niño 3.4 index and the Oceanic 

Niño Index (ONI) are the most commonly used 

indices for determining El Niño and La Niña events 

[2]. Indian Ocean Dipole (IOD) is a pattern of 

surface and sub-surface temperatures 'basin' that 

greatly affect the annual climate anomaly of many 

countries around the Indian Ocean rim, as well as 

the global climate system [3]. 

ENSO and IOD are two different phenomena. 

IOD had peak power in the 1960s and 1990s, while 

ENSO was in the 1970s and 1990s. In addition, 

ENSO has a continuous broad band spectrum from 

the 1970s to the late 1980s or early 1990s, whereas 

IOD has an IOD spectrum showing two narrow 

bands that are elongated and distinctly separated 

[4]. At the time of strong El Niño occurrence, 

variations in the climate index are often analyzed in 

terms of their association with extreme climatic 

events, particularly long dry seasons or long wet 

seasons. The same goes to IOD [5]. The purpose of 

this research is to develop the teleconnection model 

of Niño 3.4 and IOD anomalies which can be used 

as reference to explain precipitation anomalies.  

 

Data and Method 

We used the monthly data of Niño 3.4 anomaly 

index from National Oceanic and Atmospheric 

Administration for period of January 1950 – 

November 2017 and IOD anomaly data from Japan 

Agency for Marine-Earth Science and Technology 

for period of January 1950 – November 2017. We 

examine the teleconnection patterns of Niño 3.4 

anomaly index and IOD anomaly index using time 

series plot and Power Spectral Density plot. Model 

development method used in this research is 

Autoregressive Integrated Moving Average 

(ARIMA) method. This model is also known as the 

"Box-Jenkins" model. This model can estimate 

(forecast) data for the future based on past data that 

already exists.  

 

Result 

 

The characteristics of the teleconnection 

between Niño 3.4 and IOD 

The teleconnection between Niño 3.4 and 

IOD anomaly sometimes they are mutually 

reinforcing and sometimes mutually 

debilitating depends on their patterns. If both 

are in the same phases at the same time, they 

will mutually be debilitating but if both are in 
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different phases at the same time they will 

mutually debilitating. In attempt to identify the 

teleconnection of Niño 3.4 and IOD anomaly, 

we sum up both indexes as one. To describe the 

influences of Niño 3.4 and IOD we plot the 

Niño 3.4, IOD, and teleconnection between 

those data with time series plot and Power 

Spectral Density (PSD) plot. For time series we 

used the data from January 1981 until 

December 2016. The time series graph as 

shown at Figure 1 below. 

 

 
Figure 1. Time Series of (a) IOD, (b) Niño 3.4, and (c) Niño 3.4 and IOD teleconnection for period of 

January 1981 – December 2016. 

 

As we can see above, IOD (Figure 1a) gives 

lesser influences compared with Niño 3.4 (Figure 

1b) to the teleconnection between them (Figure 1c). 

But this does not mean IOD is not important. When 

IOD and Niño 3.4 have the same phase, the 

teleconnection between them becomes strong, as 

shown at Case 1, 2, and 3 from Figure 1. Next is to 

find the oscillation period of Niño 3.4, IOD, and 

teleconnection between them. At this step we used 

Power Spectral Density (PSD). Here, we used data 

from January 1950 until December 2016. The 

longer period of time was used to get more accurate 

result. The result as shown at Figure 2 below. 

 

 

 
Figure 2. Power Spectral Density (PSD) of Niño 3.4, IOD, and the teleconnection between them for period of 

January 1950 – December 2016. 
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From Figure 2, we can see that the maximum 

oscillation period of Niño 3.4 is ~60 month (5 year), 

IOD is ~36 month (~3 year) and the teleconnection 

between them is ~60 month (5 year). Once again, 

from this PSD graph, Niño 3.4 gives more 

influences to the teleconnection of Niño 3.4 and 

IOD since the maximum oscillation of Niño 3.4 and 

the teleconnection of Niño 3.4 and IOD are almost 

the same. But it does not mean that IOD is not 

important, as the spectral energy for teleconnection 

of Niño 3.4 and IOD is higher than Niño 3.4 and 

this is because of the influences of IOD. 

 

Stationary test for teleconnection data of Niño 

3.4 and IOD 

Before we build the model, it is important to 

make sure the data is stationary. In ARIMA 

method, there are few parameters that used to build 

the model, those are p, d, and q. PACF (Partial 

Autocorrelation function) used to get the p 

parameter, also known as AR (Autoregressive). 

PACF is a function that shows the magnitude of 

partial correlation between observation at the time 

of t with previous observations [6]. ACF 

(Autocorrelation Function) is used to get the q 

parameter, also known as MA (Moving Average). 

To make sure the data is stationary, this is where the 

d parameter comes from. The d parameter can be 

found from how many times the differencing is 

needed [7]. Sometimes differencing the data 

multiple times is needed until the data is stationary. 

The differencing is done by subtracting the data at 

the time of t with the previous data. Hence, the first 

step is to make sure the data is stationary or not. 

Using ACF and PACF, we can analyze whether the 

data is stationary or not.  From here, we used the 

data from January 1981 until December 2016. The 

ACF and PACF result for the teleconnection of 

Niño 3.4 and IOD is shown at Figure 3. 

 

 
(a) 

 
(b) 

Figure 3. (a) ACF (Autocorrelation Function) and 

(b) PACF (Partial Autocorrelation Function) of 

teleconnection between Niño 3.4 and IOD. 

 

Figure 3 displayed that the lag graph of ACF 

forms a sine curve and the PACF shown that on lag-

2 the curve decreased significantly although the 

lag-1 passed the upper confidence limit which 

means the data is not stationary yet. To make the 

data stationary, differencing the data is needed. 

Table 1 below shows the mean and variance of 

teleconnection between Niño 3.4 and IOD until 

second differencing. 

 

Table 1. Mean and variance for teleconnection of 

Niño 3.4 and IOD 

 Mean Variance 

Niño 3.4 + IOD 0.1977 1.126 

Diff1_ Niño 3.4 + IOD -0.0003 0.132 

Diff2_ Niño 3.4 + IOD -0.0012 0.339 

 

As shown in Table 1 above, the mean and 

variance after the first differencing are smaller than 

before differencing, the mean is from 0.1977 to -

0.0003 meanwhile the variance is from 1.126 to 

0.132. It means the data getting more stationary 

since both the mean and variance are closer to 0. 

But, after the second differencing, the mean 

becomes smaller and variance becomes bigger 

compared with the first differencing. The mean is 

from -0.0003 to -0.0012 and the variance is from 

0.132 to 0.339. This means the data only need one 

differencing since the first differencing already get 

more stationary than second differencing. With 

this, we got the value of d parameter, that is 1, since 

the data only needs one differencing to become 

stationary. 
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Creating the model for the teleconnection of 

Niño 3.4 and IOD 

After the data is stationary, the next step is 

repeating the ACF and PACF using the data after 

the first differencing to get the possibility value of 

p and q parameter. The result is shown in Figure 4. 

 

 
(a) 

            
(b) 

Figure 4. (a) ACF (Autocorrelation Function) and 

(b) PACF (Partial Autocorrelation Function) for the 

teleconnection of Niño 3.4 and IOD after first 

differencing. 

 

As displayed in Figure 4, both ACF and PACF 

prove that the data are already stationary since both 

are not form a sine curve and decreasing 

exponentially. For ACF the lag-1 and 2 passed the 

upper confidence limit, which means the possible 

lags for q parameter are 1 and 2, and for PACF only 

lag-1 passed the upper confidence limit means the 

possible lag for p parameter is 1. To find the best 

parameter with the most less error, Root Mean 

Square Error (RMSE) and mean Absolute 

Percentage Error (MAPE) can be used to find out 

the best parameter for ARIMA model [7]. The 

result is shown at Table 2 below. 

 

 

 

 

 

Table 2. Root Mean Square Error (RMSE) and 

mean Absolute Percentage Error (MAPE) for the 

teleconnection of Niño 3.4 and IOD after first 

differencing. 

 MAPE RMSE 

ARIMA (1,1,1) 134.391 0.347 

ARIMA (1,1,2) 134.089 0.347 

 

In Table 2 we can see that ARIMA (1,1,2) has 

smaller MAPE value compared with ARIMA 

(1,1,1). This means the most suitable and the less 

error model is ARIMA (1,1,2) although the RMSE 

for both model are the same. The notation for 

ARIMA parameter is (p,d,q), from the previous 

steps we got that the p parameter is 1, d is 1 and q 

is 2, so we write it as ARIMA (1,1,2). The 

estimation values for each lags that will be used to 

find the ARIMA equation are shown in Table 3. 

Table 3. Estimation values for lags from ARIMA 

(1,1,2). 

 Lag Estimation value 

AR (Ø) 1 0.516 

MA (θ) 1 0.256 

 2 -0.021 

 

The general equation for ARIMA (1,1,2) is 

shown in Equation 1.  

Zt = (1+Ø1) Zt-1 + (–Ø1+Ø2) Zt-2 + … + (–Øm-1+Øm) 

Zt-m – θ1 at-1 – θ2 at-2 – … – θn at-n (1) 

 

For ARIMA (1,1,2), Equation 1 will become 

Zt = (1+Ø1) Zt-1 + 

(–Ø1) Zt-2 – θ1 at-1 – θ2 at-2 (2) 

Substitute the estimation value from Table 2 to 

equation 2, then the ARIMA (1,1,2) equation for 

the teleconnection of Niño 3.4 and IOD is shown in 

Equation 3. 

Zt = 1.516 Zt-1 - 

0.516 Zt-2 - 0.256 at-1 + 0.021 at-2 (3) 

Model learning process 

At this step we compare the model that has 

been created using equation (3) with actual data, 

and analyze how good the model is to follow the 

actual data. We use time series plot along with error 

histogram and coefficient of determination. The 

result is shown in Figure 5. 
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Figure 5. (a) Time Series, (b) error histogram, (c) Coefficient determination of the actual data and model of 

teleconnection between Niño 3.4 and IOD. 

 

From Figure 5a, model seems can follow the 

actual data even when the actual data is 

significantly high as shown in Case 1, 2 and 3. The 

error histogram as shown in Figure 5b also follow 

the Gauss distribution which means data is reliable 

enough. How reliable is shown in Figure 5c by the 

coefficient of determination (R2) which is 0.87. 

 

 

 

Model validation 

To validate the model we use the data from 

January 2017 until November 2017 which is not 

used to build the model before to see if the model 

can actually follow the data after that and how 

reliable it is. Time series and coefficient of 

determination are used to analyze this. The result is 

shown in Figure 6. 

 

Figure 6. Time series and coefficient of determination for the model of teleconnection between Niño 3.4 and 

IOD for period of (a) January – March 2017, (b) January – June 2017, (c) January – September 2017, (d) 

January – November 2017. 
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As shown in Figure 6, the longer the time is 

used, the model becomes more deviate from the 

actual data. The coefficient of determination also 

becomes relatively lower as the time used is longer. 

When it is only 3 months (January until March) the 

coefficient of determination is 0.88, 6 month 

(January until June) is 0.81, 9 months (January until 

September) is 0.61, and 11 months (January until 

November) is 0.66. This means that the shorter the 

time is used, the more accurate is the model 

following the actual data. 

 

Conclusion 

We found that the maximum oscillation for the 

teleconnection is ~ 60 month (5 year). The best 

model that we found is using ARIMA (1,1,2) with 

the equation of  Zt = 1.516 Zt-1 - 0.516 Zt-2 - 0.256 

at-1 + 0.021 at-2. The model can follow the actual 

data with coefficient of determination is 0.87. Also, 

the model can be used to predict the data, but the 

longer the time is used, the model becomes more 

deviate from the actual data and the coefficient of 

determination becomes lower too. When 3 months 

(January until March) data is used, the coefficient 

of determination is 0.88, 6 months (January until 

June) is 0.81, 9 months (January until September) 

is 0.61, and 11 months (January until November) is 

0.66. 
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