Earthquake Hazard Analysis of National Vital Objects by Probabilistic Seismic Hazard Analysis Method in West Java

Authors

  • Arif Zidan Prayogo Department of Mathematics, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, West Java 16810, Indonesia
  • Zahrawani Ifada Rorosanto Department of Physiscs, Faculty of Mathematics and Natural Sciences, Universitas Jenderal Soedirman, Purwokerto, Central Java 53122, Indonesia
  • Arifan Jaya Syahbana Center for Geological Disater Research, National Research and Innovation Agency, Bandung, West Java 40135, Indonesia
  • Ika Maulita Department of Physiscs, Faculty of Mathematics and Natural Sciences, Universitas Jenderal Soedirman, Purwokerto, Central Java 53122, Indonesia

DOI:

https://doi.org/10.21831/inersia.v21i1.72915

Keywords:

Probabilistic Seismic Hazard Aanalysis (PSHA), West Java, National vital objects

Abstract

The Probabilistic Seismic Hazard Analysis (PSHA) method was used to analyze the level of earthquake hazard in West Java Province, Indonesia, which is located between two active tectonic plates. This research integrates literature study, earthquake data collection, and data processing to explore the influence of megathrust, background, fault, and combine earthquake sources on local and national vital objects in the region, such as Pusdik Kopassus, Presidential Palace, Cirebon PLTU, Geothermal Power Plant, Peacekeeping Mission Center (PMPP TNI), PT. PINDAD, PT DAHANA SUBANG, PLM GUNUNG SAWAL, Walahar Dam, PT Indonesia Power UJP Jabar 2 Pelabuhan Ratu, which have important roles in critical infrastructure, defense, and national resilience. The analysis shows variations in maximum ground acceleration between 0.40 g to 1.00 g for background earthquake sources, and 0.00 g to 1.00 g for fault earthquake sources. The research also underscores the importance of mitigation efforts and proper planning to reduce the potential impact of earthquakes in West Java, taking into account the crucial role of national vital objects in maintaining the stability and sustainability of the region. The implications of these findings reinforce the urgency to improve coordination between stakeholders in building earthquake resilience at the local and national levels, and highlight the importance of hazard curve analysis on national vital objects to inform the future of the region.

References

[1] J. A. Katili, “Geotectonics of Indonesia,” Mod. View Dir. Jenderal, 1980.

[2] P. Purbandini, B. J. Santosa, and B. Sunardi, “Analisis Bahaya Kegempaan di Wilayah Malang Menggunakan Pendekatan Probabilistik,” J. Sains Dan Seni ITS, vol. 6, no. 2, pp. B20–B24, Sep. 2017, doi: 10.12962/j23373520.v6i2.25221.

[3] J. Nugraha, G. Pasau, B. Sunardi, and S. Widiyantoro, “Analisis Hazard Gempa dan Isoseismal untuk Wilayah Jawa-Bali-NTB,” J. Meteorol. Dan Geofis., vol. 15, no. 1, 2014.

[4] Y. Muntafi and L. Makrup, “Analisis Hazard Gempa DKI Jakarta Metode Probabilistik Dengan Pemodelan Sumber Gempa 3 Dimensi,” Teknisia, vol. 20, no. 2, 2015.

[5] A. Shiddiq, "Analisis bahaya kegempaan (seismic hazard) di Bandar Udara Internasional Jawa Barat (BIJB) Kecamatan Kertajati, Kabupaten Majalengka dengan metode PSHA (Probability Seismic Hazard Analysis)," Skripsi, Program Studi Fisika, Universitas Islam Negeri Syarif Hidayatullah, Jakarta, 2018.

[6] S. P. Perdana, "Analisis percepatan permukaan tanah maksimum di wilayah Jawa Barat dengan menggunakan metode Atkinson-Boore (2003) (Studi kasus gempa bumi 1973–2009)," Skripsi, Program Studi Fisika, Universitas Islam Negeri Syarif Hidayatullah, Jakarta, 2012.

[7] C. A. Cornell, “Engineering seismic risk analysis,” Bull. Seismol. Soc. Am., vol. 58, no. 5, pp. 1583–1606, 1968.

[8] D. A. Noktaviyani, "Analisis seismisitas dan risiko bencana gempa bumi tektonik di Kabupaten Kerinci dan Kota Sungai Penuh Provinsi Jambi," Skripsi, Program Studi Teknik Geofisika, Fakultas Sains dan Teknologi, Universitas Jambi, Jambi, 2021.

[9] U. J. Fauzi, "Peta deagregasi Indonesia berdasarkan analisis probabilitas dengan sumber gempa tiga dimensi," Tesis Magister, Institut Teknologi Bandung, Bandung, 2011.

[10] W. Du and T. C. Pan, “Probabilistic seismic hazard assessment for Singapore,” Nat. Hazards, vol. 103, no. 3, pp. 2883–2903, 2020, doi: 10.1007/s11069-020-04107-4.

[11] W. Du and T. C. Pan, “Probabilistic seismic hazard assessment for Singapore,” Nat. Hazards, vol. 103, no. 3, pp. 2883–2903, 2020, doi: 10.1007/s11069-020-04107-4.

[12] D. M. E. Haque, N. W. Khan, M. Selim, A. S. M. M. Kamal, and S. H. Chowdhury, “Towards Improved Probabilistic Seismic Hazard Assessment for Bangladesh,” Pure Appl. Geophys., vol. 177, no. 7, pp. 3089–3118, 2020, doi: 10.1007/s00024-019-02393-z.

[13] M. Waseem, S. Khan, and M. Asif Khan, “Probabilistic Seismic Hazard Assessment of Pakistan Territory Using an Areal Source Model,” Pure Appl. Geophys., vol. 177, no. 8, pp. 3577–3597, 2020, doi: 10.1007/s00024-020-02455-7.

[14] A. ur Rahman, F. A. Najam, S. Zaman, A. Rasheed, and I. A. Rana, An updated probabilistic seismic hazard assessment (PSHA) for Pakistan, vol. 19, no. 4. Springer Netherlands, 2021. doi: 10.1007/s10518-021-01054-8.

[15] R. Omira et al., “Global Tonga tsunami explained by a fast-moving atmospheric source,” Nature, vol. 609, no. 7928, 2022, doi: 10.1038/s41586-022-04926-4.

[16] A. Y. Baeda and F. Husain, “Kajian Potensi Tsunami Akibat Gempa Bumi Bawah Laut di Perairan Pulau Sulawesi,” J. Tek. Sipil, vol. 19, no. 1, p. 75, 2012, doi: 10.5614/jts.2012.19.1.7.

[17] P. Higuera, I. Sepúlveda, and P. L. F. Liu, “Filling in the Gaps of the Tsunamigenic Sources in 2018 Palu Bay Tsunami,” in Springer Tracts in Civil Engineering, 2022. doi: 10.1007/978-981-16-5312-4_29.

Downloads

Published

2025-05-31

How to Cite

Prayogo, A. Z., Rorosanto, Z. I., Syahbana, A. J., & Maulita, I. (2025). Earthquake Hazard Analysis of National Vital Objects by Probabilistic Seismic Hazard Analysis Method in West Java. Inersia : Jurnal Teknik Sipil Dan Arsitektur, 21(1), 1–10. https://doi.org/10.21831/inersia.v21i1.72915

Issue

Section

Articles