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 This research aims to find natural product compounds that have 

the potential to act as MAO-B inhibitors that are useful in the treatment 

of neurodegenerative diseases, through the stages: a) Virtual 

Screening, b) Molecule Docking, c) Pharmacokinetic and toxicity 

prediction, and d) Simulation approach Molecular dynamics. 

The research steps include the following steps: a) searching for 

molecules in the ZINC15 data base that are similar to the natural ligand 

molecule (safinamide) obtained from the protein data bank (PDB code: 

2v5z) and the control ligand L-DOPA. A total of 481 molecules were 

downloaded from the data base and then molecular docking was 

carried out using the autodock program on the MAO-B target in the 

2v5z receptor. After carrying out the docking analysis, 48 ligand 

molecules were selected which had a binding affinity (G/kcal/mol) 

that was smaller than the G of the natural ligand and the control 

ligand and nine (9) ligand molecules were taken to be tested: (i) ligand-

ligand interactions MAO-B with discovery studio, (ii) Absorption, 

Distribution, Metabolism and Excretion properties with SwissADME 

and (iii) toxicity using PROTOX-II. Molecular dynamics simulations 

were carried out to determine the stability of ligands in proteins. 

Ligand complex 

[CC(C)c1ccc(NC(=O)Cn2cnc3c2c(=O)n(C)c(=O)n3C)cc1]-2v5z was 

chosen to simulate for 100 ps. The results of the molecular docking 

study showed that there were 9 molecules that had binding affinity 

values that were smaller than the binding affinity of the natural ligand 

and the control ligand. Ligand and residue interactions are dominated 

by hydrogen bonds, donor-donor and pi-pi stacked interactions. Based 

on SwissADME, the Blood Brain Barrier (BBB) permeant on ligand 

number 1, 2, 3, 5, 6, and 9 shows that it is orally active and cannot pass 

through the BBB and will not cause any side effects, whereas ligand 

number 4, 7, 8, 10, and 11 can cross the BBB and may cause side effects. 

Based on the results of toxicity prediction (PROTOX-II), it is known 

that there are four (4) ligands in class V, five (5) ligands in class IV and 

the rest in class II. Hepatotoxicity, carcinogenicity, and Phosphoprotein 

(Tumor Suppressor) p53 in eleven ligands are predicted to be inactive 

and have a small probability. The stimulated 

[CC(C)c1ccc(NC(=O)Cn2cnc3c2c(=O)n(C)c(=O)n3C)cc1]-2v5z complex 

apparently still shows ligand-protein fluctuations so that its 

conformation is still unstable. 
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1. INTRODUCTION 

Neurodegenerative and brain-related diseases are a major concern among aging populations 

worldwide (Boulaamane, et al, 2021). Neurodegenerative diseases such as Parkinson's and 

Alzheimer's diseases have a multifactorial nature characterized by progressive loss of neurons in the 

brain (Kovacs, 2014). Parkinson's disease (PD) is defined primarily by the progressive loss of 

dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the midbrain (Relja, 2004). 

More than six million people worldwide are affected today with a prevalence of 150 in every 100,000 

people increasing with age and affecting 1% of the population over 60 years (Jeppsson, et al, 2012). 

Current pharmaceutical treatments for PD include levodopa or levodopa plus dopa-decarboxylase 

inhibitors, dopamine agonists, and catechol-O-methyl transferase (COMT)/monoamine oxidase B 

(MAO-B) inhibitors (DiPisa, 2015). Recently, other non-dopaminergic drugs have shown promising 

efficacy for alleviating PD symptoms such as adenosine A2Areceptor (AA2AR) antagonists (Rohit & 

Tiratha, 2019). 

Monoamine oxidase B (MAO-B) is an outer membrane-binding mitochondrial flavoenzyme 

that functions in the oxidative deamination of dopamine in the striatum. Inhibition of MAO-B in the 

brain can slow the depletion of dopamine stores and increase endogenous levels of dopamine, and 

exogenously produced dopamine is provided with levodopa. Furthermore, MAO-B inhibitors can 

also provide neuroprotective effects by reducing the production of potentially dangerous 

byproducts of dopamine metabolism in the brain (Azam, 2012). 

Two isoforms of monoamine oxidase (MAO), 1MAO A and MAO B, exist in humans and 

are both 60-kDa mitochondrial outer membrane-bound flavoenzymes that share 70% sequence 

identity. These enzymes have distinct and overlapping specificities in the oxidative deamination of 

neurotransmitters and amines contained in food, the development of specific reversible inhibitors 

has been a long-sought goal. Expression of MAO B levels in nervous tissue increases 4-fold with age, 

resulting in increased levels of dopamine metabolism and production of higher levels of hydrogen 

peroxide, which is thought to play a role in the etiology of neurodegenerative diseases such as 

Parkinson's and Alzheimer's disease. Thus, it is important that the development of specific and 

reversible MAO B inhibitors may lead to clinically useful neuroprotective agents. The new crystal 

structure of human MAO B in complex with several pharmacologically important inhibitors has been 

solved to 1.6-Å resolution. The access channel from the protein surface to the active site of the 

enzyme consists of two cavities, the entry cavity and the active site cavity (Frantisek, 2005). 

Monoamine Oxidase (MAO) (EC 1.4.3.4) belongs to a family of flavin adenine dinucleotide 

(FAD)-dependent enzymes expressed in the outer mitochondrial membrane of nerve cells. The MAO 

enzyme is responsible for the oxidative deamination of monoamine neurotransmitters such as 

dopamine, adrenaline, and noradrenaline in the central nervous system (CNS) (DiPisa, 2015; Lidia, 

et l, 2020). The MAO enzyme exists in two isoforms, MAO-A and MAO-B which have 70% sequence 

similarity but differ in tissue distribution, substrates, and inhibitor preferences (DiPisa, 2015). The 

development of the first MAO inhibitors was abandoned due to side effects related to tyramine 

metabolism, which caused a cardiovascular crisis (Yasin, et al, 2020). However, a new class of 

selective MAO-B inhibitors is efficient in treating PD symptoms. It was also shown that this new 

class of selective MAO-B inhibitors did not have tyramine-related side effects. In addition, selective 

MAO-B inhibitors can act as neuroprotective agents by limiting the release of free radical species and 

may thereby reduce disease progression ((DiPisa, 2015; Cheng, 2013). MAO-A preferentially 

metabolizes serotonin while MAO-B preferentially deaminates 2-phenylethylamine and 

benzylamine. Dopamine, norepinephrine, and epinephrine are substrates of both isoforms in most 

animal tissues (Kato, et al, 2021). 

During aging, MAO-B expression increases in the brain and is connected to increased 

dopamine metabolism resulting in increased production of reactive oxygen species (ROS) such as 

hydrogen peroxide (H2O2) inducing oxidative damage and apoptotic signaling events (Zubair, 
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Maulana & Mukaddas, 2020). Previously approved MAO-B inhibitors are selegiline and rasagiline 

which irreversibly inhibit MAO-B with IC50 values of 6.8 and 14 nM, respectively (Monika, et, al, 

2010). The latest approved MAO-B inhibitor is safinamide which reversibly inhibits MAO-B with an 

IC50 value of 450 nM (Azam, Madi & Ali, 2012). Istradefylline, a caffeine-based inhibitor approved 

in Japan in 2013 and also approved for medical use in the United States in 2019 acts as a dual inhibitor 

of MAO-B and AA2AR. However, istradefylline was found to be a weak inhibitor of MAO-B (IC50 

=28μM) which prompted further research on new substitutions in the caffeine core. 

The MAO-A crystal structure (PDB ID: 2Z5Y) has a monopartite substrate cavity with a 

volume of ∼550 Å3 while the MAO-B crystal structure has a bipartite cavity structure with an 

entrance cavity of ∼290 Å3 and a substrate cavity of ∼ 400 Å3 [17]. ILE-199 and TYR-326 separate 

these two cavities in MAO-B that function as “gate” residues and structural determinants for 

substrate and inhibitor recognition by MAO-B (Monika, et, al, 2010). 

Structural studies revealed that MAO-B (PDB ID: 2V5Z) is formed by two monomers 

consisting of globular domains anchored to the membrane via a C-terminal helix [20]. MAO-B active 

site residues that have similarities to the MAO-A active site are TYR-60, LEU-164, PHE-168, GLN-

206, ILE-198, ILE-316, PHE-343, TYR-398, and TYR -435. Meanwhile, the amino acids specific for 

MAO-B are located in the hydrophobic pocket formed by LEU-171, CYS-172, ILE-199, and TYR-326 

(Azam, Madi & Ali, 2012). There is a large body of literature supporting the use and efficacy of 

natural products (NPs) in PD such as flavonoids, xanthones, phenolic derivatives, alkaloids, and 

caffeine. This natural resource and its derivatives have been reported for their potential to selectively 

inhibit MAO-B and may offer a safer alternative compared to conventional drugs. Additionally, 

caffeine has been used in several studies as a scaffold for the design of dual MAO inhibitors/AA2AR 

antagonists. Pretorius et al. synthesized a series of C-8 substituted caffeine analogs and found that 

compounds containing a 4-phenylbutadiene moiety were the most potent candidates for MAO-B 

and AA2AR. On the other hand, Azam et al. exploring many caffeine derivatives from the literature 

containing many substitutions through molecular docking and structure-activity relationship 

studies, it was found that the placement of the hydrophobic group on C8 is critical for MAO-B 

inhibition and AA2AR antagonism, whereas substitutions occurring on C1 and C3 are optimal for 

AA2AR but does not harm MAO-B. Although research on caffeine has been ongoing for decades, its 

naturally occurring derivatives have not been investigated in detail (Azam, Madi & Ali, 2012). 

NPs and NP-based compounds are an ideal choice for scientists and researchers due to the 

broadspectrum activity of NPs with minimal or no toxic effects on human health. Literature has 

shown that caffeine among other NPs is a potent compound that has neuroprotective properties. 

Considering the relationship between neurodegeneration and oxidative stress due to mitochondrial 

imbalance and accumulation of reactive oxygen species (ROS), MAO-B was, and is, considered a 

valid therapeutic target to slow the progression of Parkinson's disease. 

The three-dimensional (3D) complex structure formed between the drug target and the drug 

candidate plays an important role in structure-based drug design (SBDD), where the drug candidate 

molecule is designed concerning the 3D structure of the drug target. Thus, computational prediction 

of protein-ligand complex structures, i.e., computational docking, plays an important role in SBDD. 

For computational docking, various procedures have been proposed that can predict the structure 

of protein-ligand complexes with high accuracy. To evaluate the docking software, docking poses 

that provide root mean square deviations (RMSDs) for the experimental structures less than or equal 

to 2.0 are considered as reasonable poses. When at least one reasonable pose is obtained from 

computational docking, the docking experiment is considered successful. The success rate of many 

docking programs has been reported to be higher than 70%. However, some well-programmed 

software has a success rate of more than 80% (Kovacs, 2014; Relja, 2004). Although a reasonable 

docking pose is preferably obtained as the highest-scoring pose of the ligand, evaluation methods 

for docking poses without experimental knowledge have not been sufficiently developed (Kato, 

2021). 
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Generally, computational docking programs produce several candidate structures for 

protein-ligand complexes. For efficient in silico drug design trials, one or more candidates must be 

selected for the next step of drug design. In many cases, known experimental results, such as 

structure-activity studies, can be used for candidate pose selection. If useful experimental results are 

not available, pose selection is done from the evaluation of the score function. Although this scoring 

method likely provides appropriate scores for candidate docking poses, previous data suggests that 

approximately 50% of the highest-ranked poses can be considered plausible structures. For this 

reason, classical molecular dynamics (MD) simulations are sometimes used for docking pose 

selection (Kato, 2021). 

In this study, a substructure search was performed on a natural product database to retrieve 

caffeine-containing natural products because they are known for their neuroprotective properties 

and their potential to act as AA2AR antagonists, a validated target for PD. Structure-based virtual 

screening was used to evaluate the affinity of selected natural compounds towards MAO-B and 

AA2AR. ADMET properties were evaluated using the silicon method. Finally, molecular dynamics 

simulations were performed to study the interactions and stability between the selected compounds 

and MAO-B over the simulation time. 

 

2. RESEARCH METHOD 

2.1 Materials and tools 

Retrieval of all available natural compounds based on the similarity structure of safinamide 

and L-DOPA, using the ZINC15 databases. These compounds were downloaded in SDF format for 

further analysis. The software used is autodock4 and autodock vina, MGLTools 1.5.7, Pymol, 

swissadme, protox-II, and Desmond while the hardware consists of a computer with an Intel Core 

i3 processor, 6 GB RAM, 64-bit Windows operating system. 

 

2.2 Molecular Docking 

2.2.1 Receptor preparation and grid determination 

The crystal structure of MAO-B (PDB ID: 2V5Z, resolution=1.7 Å) in complex with 

safinamide was taken from the RCSB Protein Data Bank (https: http://www.rcsb.org/). Residues with 

missing atoms were corrected using the AutoDockTools 1.5.6. Water molecules were removed since 

they were not involved in ligand binding. Since MAO-B is expressed as a dimer, only one chain was 

kept together with the FAD cofactor for molecular modeling studies to reduce computational costs. 

Finally, polar hydrogens and Kollman charges were added. Grid boxes were placed near the FAD 

cofactor with a distance of 1 Å. The dimensions of the lattice were chosen large enough (40 × 40 × 40 

Å in the x, y, and z directions, respectively) to fit all the residues that form both active site cavities in 

the protein. The grid squares are positioned so as to cover the entire binding site and allow larger 

molecules to dock properly: 52.114 ×156.171 × 28.035 Å for MAO-B at x, y, and z directions. Finally, 

the resulting coordinates for the grid boxes are saved in a text file. 

 

2.2.2 Ligand preparation 

The Selected compounds were split into multiple files, with each file containing one ligand. 

3D conformations were generated for all compounds, geometric optimization was performed using 

the Merck molecular force field (MMFF94) implemented in the Open Babel chemistry toolbox. The 

minimized ligands were then prepared for molecular docking studies using the package of 

AutoDockTools 1.5.6. Partial charges, atomic types, and polar hydrogens are added to all 

compounds and then converted to PDBQT format. 

 

2.3 Molecular dynamics simulation 

Molecular dynamics simulations were carried out with the Desmond program for the SAG, 

L-DOPA, and Ligand 9 (CC(C)c1ccc(NC(=O)Cn2cnc3c2c(=O)n(C)c(=O)n3C)cc1) with 2v5z receptors. 
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All complexes were individually solvated by placing a box filled with water with a size of 10 with a 

single point charge (SPC) water model with periodic boundary conditions (PBC). After optimization, 

the system is simulated in the NPT ensemble maintained at a temperature of 300 K and pressure 

using the Nose-Hoover thermostatic algorithm. The analysis of the ligand-receptor interaction was 

carried out using a simulation interaction diagram tool. The results of the analysis in the form of 

RMSD and RMSF ligand-protein against the reference. 

 

 

3. RESULTS AND ANALYSIS 

3.1 Ligand with the best conformation and binding affinity (G) 

A total of 48 ligands screened in the ZINC15 database with the best and selected 

conformations and their binding affinity values (G/kcal mol-1) are presented in Table 1. The ligand 

is selected based on the binding affinity values which is smaller than the binding affinity of the 

natural ligand and the control ligand. The natural ligand is a ligand taken from the 2v5z receptor, 

namely (S)-(+)-2-[4-(Fluorobenzyloxy-Benzylamino) Propionamide] or abbreviated as SAG, while 

the control ligand is levodopa (3,4-dihydroxy-L-phenylalanine). 

 

Table 1 Binding affinity values (kcal mol-1) of ligands in the 2v5z receptor 

 

ZINC ID, 

Native Dan 

Control 

Ligand 

SMILES 

G/ 

(kcal

mol-1) 

SAG (native 

ligand) 
O=C(/C=C/c1ccc(O)c(O)c1)C[C@@H](Cc1ccc(O)c(O)c1)C(=O) 

-10,0 

Levodopa (3,4-

dihidroksifeni

lalanin) 

(ligand 

control) 

C1=CC(=C(C=C1CC(C(=O)O)N)O)O 

-6,2 

ZINC00007045

4608 
O=C(/C=C/c1ccc(O)c(O)c1)C[C@@H](Cc1ccc(O)c(O)c1)C(=O)O 

-10,2 

ZINC00000090

1160 
O=C(/C=C/c1ccc(O)c(O)c1)O[C@@H](Cc1ccc(O)c(O)c1)C(=O)O 

-10,3 

ZINC00008599

4783 

N[C@H](Cc1ccc(O)c(-

c2c(O)c(O)c3c(c2O)C(=O)c2c(cc(O)c(C(=O)O)c2C(=O)O)C3=O)c1)C(=

O)O 

-10,2 

ZINC00001481

3266 
C[C@@H](Cc1ccc(O)cc1)[C@H](C)Cc1ccc(O)c(O)c1 

-10,0 

ZINC00004306

0554 

O=C(/C=C/c1cc(O)c(O)cc1/C=C/c1ccc(O)c(O)c1)O[C@H](Cc1ccc(O)c(

O)c1)C(=O)O 

-10,2 

ZINC00000648

7282 
COc1ccc(C[C@@H](C)[C@@H](C)Cc2ccc(O)c(O)c2)cc1O 

-10,0 

ZINC00003383

2765 
COC(=O)[C@H](Cc1ccc(O)c(O)c1)OC(=O)/C=C/c1ccc(O)c(O)c1 

-10,0 

ZINC00001337

7898 
O=C(CCc1ccc(O)c(O)c1)C[C@@H](O)CCc1ccc(O)c(O)c1 

-10,1 

ZINC00003116

9380 

C[C@@H](Cc1ccc(O)c(O)c1)[C@@H](C)Cc1ccc(O)c(OC(=O)c2ccc(O)cc

2)c1 

-10,5 
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ZINC ID, 

Native Dan 

Control 

Ligand 

SMILES 

G/ 

(kcal

mol-1) 

ZINC00003116

9384 

C[C@@H](Cc1ccc(O)c(OC(=O)c2ccc(O)cc2)c1)[C@H](C)Cc1ccc(O)c(O)

c1 

-10,0 

ZINC00003116

9388 

C[C@@H](Cc1ccc(O)c(O)c1)[C@H](C)Cc1ccc(O)c(OC(=O)c2ccc(O)cc2)

c1 

-10,0 

ZINC00003116

9392 

C[C@H](Cc1ccc(O)c(O)c1)[C@H](C)Cc1ccc(O)c(OC(=O)c2ccc(O)cc2)c

1 

-10,5 

ZINC00007045

5139 
O=C(CCc1ccccc1)C[C@H](O)CCc1ccc(O)c(O)c1 

-10,1 

ZINC00008550

6858 

O=C(/C=C/c1cc(O)c(O)c2ccc(-

c3ccc(O)c(O)c3)cc12)O[C@H](Cc1ccc(O)c(O)c1)C(=O)O 

-10,5 

ZINC00001520

3323 

O=C(O[C@H](Cc1ccc(O)c(O)c1)C(=O)O)c1cc(-

c2ccc(O)c(O)c2)c2cc(O)c(O)cc2c1 

-11,2 

ZINC00001337

7934 
O=C(/C=C/CCc1ccc(O)c(O)c1)CCc1ccc(O)c(O)c1 

-10,2 

ZINC00007045

7399 

O=C(/C=C/c1ccc2c(c1)O/C(=C\c1ccc(O)c(O)c1)C(=O)O2)O[C@H](Cc1

ccc(O)c(O)c1)C(=O)O 

-10,7 

ZINC00000250

8009 
N[C@@H](Cc1ccccc1)C(=O)Nc1ccc2ccccc2c1 

-11,6 

ZINC00001337

7927 
Oc1ccc(CCCC[C@@H](O)CCc2ccc(O)c(O)c2)cc1O 

-10,1 

ZINC00008550

6834 

O=C(/C=C/c1cc(O)c(O)cc1/C=C/c1ccc(O)c(O)c1)O[C@H](Cc1cc(O)c(O

)c(O)c1)C(=O)O 

-10,4 

ZINC00008550

6765 

O=C(/C=C/c1cc(O)c(O)cc1/C=C/c1cc(O)c(O)cc1-

c1cccc(O)c1)O[C@H](Cc1ccc(O)c(O)c1)C(=O)O 

-11,0 

ZINC00004087

3155 

O=C(/C=C/c1ccc(O)c2c1C=Cc1cc(O)c(O)cc1O2)O[C@H](Cc1ccc(O)c(O

)c1)C(=O)O 

-11,2 

ZINC00001334

1088 
O=C(/C=C/CCc1ccc(O)cc1)CCc1ccc(O)c(O)c1 

-10,2 

ZINC00010525

8759 

COC(=O)[C@@H](Cc1ccc(O)c(O)c1)OC(=O)/C=C/c1ccc(O)c(O)c1/C=C/

c1ccc(O)c(O)c1 

-10,2 

ZINC00000000

1083 
O=C(/C=C/c1ccc(O)c(O)c1)OCCc1ccccc1 

-10,0 

ZINC00008550

6767 

O=C(/C=C/c1cc(O)c(O)c2ccc(-c3cc(O)c(O)cc3-

c3cccc(O)c3)cc12)O[C@H](Cc1ccc(O)c(O)c1)C(=O)O 

-10,7 

ZINC00000211

1079 

Cc1oc2cc3oc(=O)c(CCC(=O)N[C@@H](Cc4ccc(O)c(O)c4)C(=O)O)c(C)c

3cc2c1C 

-10,3 

ZINC00000211

1081 

Cc1oc2cc3oc(=O)c(CCC(=O)N[C@H](Cc4ccc(O)c(O)c4)C(=O)O)c(C)c3

cc2c1C 

-10,2 

ZINC00003813

8562 

O=C(/C=C/c1ccc(O)c2c1[C@H](C(=O)O)[C@H](c1ccc(O)c(O)c1)O2)O[

C@@H](Cc1ccc(O)c(O)c1)C(=O)O 

-10,0 

ZINC00007045

4961 

O=C(/C=C/c1ccc(O)c2c1[C@H](C(=O)O)[C@@H](c1ccc(O)c(O)c1)O2)O

[C@@H](Cc1ccc(O)c(O)c1)C(=O)O 

-10,7 

ZINC00021766

0893 
COc1cccc2[nH]c(C(=O)NC[C@@H]3CCCN4CCCC[C@H]34)cc12 

-10,3 

ZINC00060440

5978 
(COc1cccc2[nH]c(C(=O)NCCc3cn(C)c4ccccc34)cc12) 

-11,3 
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ZINC ID, 

Native Dan 

Control 

Ligand 

SMILES 

G/ 

(kcal

mol-1) 

ZINC00052473

1786 
(COc1cccc2[nH]c(C(=O)N[C@H]3CCCc4c3[nH]c3ccccc43)cc12 

-11,7 

ZINC00000012

8554 
Cn1c(=O)c2c(ncn2Cc2ccc(C(C)(C)C)cc2)n(C)c1=O 

-10,8 

ZINC00000000

1301 
CN(C)c1ccc(Cn2cnc3c2c(=O)n(C)c(=O)n3C)cc1 

-10,2 

ZINC00000089

8145 
CC(C)c1ccc(NC(=O)Cn2cnc3c2c(=O)n(C)c(=O)n3C)cc1 

-11,0 

ZINC00003786

8689 
Cn1c(=O)c2c(nc(OCc3ccccc3)n2C)n(C)c1=O 

-10,2 

ZINC00004548

3982 
Cn1c(=O)c2c(nc(/C=C/C=C/c3ccccc3)n2C)n(C)c1=O 

-11,2 

ZINC00004537

3200 
Cn1c(=O)c2c(nc(OCc3cccc(F)c3)n2C)n(C)c1=O 

-10,6 

ZINC00000085

1804 
Cn1c(=O)c2c(ncn2CC(=O)Nc2nc3ccccc3s2)n(C)c1=O 

-10,7 

ZINC00000085

1779 
CC[C@H](C)c1ccc(NC(=O)Cn2cnc3c2c(=O)n(C)c(=O)n3C)cc1 

-10,8 

ZINC00004549

8298 
Cn1c(=O)c2c(nc(/C=C/C=C/c3cccc(F)c3)n2C)n(C)c1=O 

-12,4 

ZINC00004533

7362 
Cc1cccc(COc2nc3c(c(=O)n(C)c(=O)n3C)n2C)c1 

-10,7 

The binding affinity (G) price data presented in Table 1 was chosen to be smaller than the G price 

for the native ligand-2v5z interaction. The G values for native ligand-2v5z and control ligand-2v5z 

are -10.0 and -6.2 kcal/mol respectively, while the other ligands screened are less than -10.0 kcal/mol. 

Some interactions of selected ligands with receptors are shown in Figures 1- 5 below, 

 
 

 

Figure 1 The 2D interaction of SAG (safinamide) ligands with 2v5z receptors obtained from 

proteins.plus 
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Figure 2 The 2D interaction of 2v5z residue with control ligand levodopa (-6.2 kcal/mol) 

obtained via discovery studio visualizer 

 
Figure 3 The 2D interaction of residue 2v5z with ligand 

[Cn1c(=O)c2c(nc(_C=C_C=C_c3cccc(F)c3)n2C)n(C)c1=O] (-12.4 kcal/mol) obtained via 

discovery studio visualizer program 
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Figure 4 The 2D interaction of residue 2v5z with ligand 

[Cn1c(=O)c2c(nc(_C=C_C=C_c3ccccc3)n2C)n(C)c1=O] (-11.2 kcal/mol) obtained via the 

discovery studio visualizer program 

 

 
 

 

Figure 5 The 2D interaction of residue 2v5z with ligand 

[N[C@@H](Cc1ccccc1)C(=O)Nc1ccc2ccccc2c1] (-11.6 kcal/mol) obtained through the discovery 

studio visualizer program 
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The interactions that can be observed in the figures are mainly hydrogen bond interactions, donor-

donor interactions and stacked Pi-Pi. In general, the value of ΔG is related to the number of H-bond 

interactions. The more H-bonds, the lower the affinity binding value, so that it is better able to inhibit 

the target in the receptor, in this case monoamine oxidase B (MAO-B). 

 

 

3.2 Pharmacokinetic properties, and druglikes of ligands 

The pharmacokinetic, toxicity and druglike properties of nine (9) smiles structures with 

G < -10.0 kcal/mol are presented in Table 2. ADMET prediction selection, namely absorption, 

distribution, metabolism, excretion and toxicity profiles, was carried out to determine drug 

candidates that are non-toxic and have a good oral pharmacokinetic profile, which is determined 

by the following parameters: high GI absorption, bioavailability score 0.55, grouped in class VI 

LD50 toxicity (more than 5,000 mg/kg), non-carcinogenic and non-mutagenic (Daina, Michielin, & 

Zoete, 2017; Martin, 2005). The pharmacokinetic properties (GI absorption, BBB permeant, 

bioavailability score, synthetic, Log S, Wlog P) and druglikes (Ro5) of the nine (9) screening ligands, 

native ligands and control ligands are presented in Table 3.  

The SA (synthetic accessibility) value range is between 1 and 10, if the SA value is closer to 

1, it means that the compound is easier to synthesize and conversely, the closer to 10 the compound 

is, the more difficult it is to synthesize (Ertl & Schuffenhauer, 2009). Eleven (11) selected 

compounds have SA values in the range 1< SA< 5, which indicates they are relatively easy to 

synthesize. Compounds can be classified according to solubility value (LogS). Compounds with 

solubility values of 0 and higher are highly soluble, compounds in the range 0 to −2 are soluble, 

compounds in the range −2 to −4 are slightly soluble, and insoluble if less than −4. In general, the 

selected ligand molecules have moderate solubility (slightly soluble). The property of lipophilicity 

shows that molecules can penetrate lipid membranes. Lipophilicity is characterized by the WLog 

P value. The Wlog P value of the ligand shown in table 3 is smaller than 5, which means the 

molecule can be explored as an important orally active molecule.  

The bioavailability score has a score of around 0.55, meaning it does not become an anion 

at pH 6 and meets all Lipinski rules (Ro5), in this study there were 8 compounds that met this 

criterion, while three compounds had an NB of 0, 11 means that the compound will change to an 

anion (charge -1 or -2) at pH 6. The SWISS ADMET prediction, namely BBB (Blood Brain Barrier) 

is permeant to ligand compounds number 1, 2, 3, 5, 6, and 9, indicating that the orally active drug 

cannot pass through the BBB and will not cause any side effects, whereas ligand number 4, 7, 8, 10, 

and 11 can cross the BBB and may cause side effects. 

 

Table 2. The Ligands (SMILES) are predicted by swissadme and protox-ii 

 

Number  

ligand 

SMILES 

1 O=C(/C=C/c1ccc(O)c(O)c1)C[C@@H](Cc1ccc(O)c(O)c1)C(=O)O as Native ligand 

Affinity binding (-10,0 kcal/mol) 

2 C1=CC(=C(C=C1CC(C(=O)O)N)O)O [Levodopa (3,4-dihidroksifenilalanin)] as 

ligand control, Affinity binding (-6,2 kcal/mol) 

3 O=C(O[C@H](Cc1ccc(O)c(O)c1)C(=O)O)c1cc(-c2ccc(O)c(O)c2)c2cc(O)c(O)cc2c1 

Affinity binding (-11,2 kcal/mol) 

4 N[C@@H](Cc1ccccc1)C(=O)Nc1ccc2ccccc2c1 

Affinity binding (-11,6 kcal/mol) 

5 O=C(/C=C/c1cc(O)c(O)cc1/C=C/c1cc(O)c(O)cc1- 

c1cccc(O)c1)O[C@H](Cc1ccc(O)c(O)c1)C(=O)O 

 (-11,0 kcal/mol) 
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Number  

ligand 

SMILES 

6 O=C(/C=C/c1ccc(O)c2c1C=Cc1cc(O)c(O)cc1O2)O[C@H](Cc1ccc(O)c(O)c1)C(=O)O 

Affinity binding (-11,2 kcal/mol) 

7 (COc1cccc2[nH]c(C(=O)NCCc3cn(C)c4ccccc34)cc12) 

Affinity binding (-11,3 kcal/mol) 

8 (COc1cccc2[nH]c(C(=O)N[C@H]3CCCc4c3[nH]c3ccccc43)cc12 

Affinity binding (-11,7 kcal/mol) 

9 CC(C)c1ccc(NC(=O)Cn2cnc3c2c(=O)n(C)c(=O)n3C)cc1 

Affinity binding (-11,0 kcal/mol) 

10 Cn1c(=O)c2c(nc(/C=C/C=C/c3ccccc3)n2C)n(C)c1=O 

Affinity binding (-11,2 kcal/mol) 

11 Cn1c(=O)c2c(nc(/C=C/C=C/c3cccc(F)c3)n2C)n(C)c1=O 

Affinity binding (-12,4 kcal/mol) 

 

 

Table 3 Pharmacokinetic properties (GI absorption, BBB permeant, bioavailability score, 

synthetic accessibility, Log S, Wlog P) and druglikes (Ro5) of the nine (9) screening ligands, 

native ligands and control ligands 

 

Number 

ligand 

GI 

absorption 

BBB 

permeant 

Lipinski 

rule of 

five 

(Ro5) 

Bioavaila 

bility 

score 

synthetic 

accessi 

bility 

(SA) 

solubility 

Log S 

Lipo 

philicity 

(Wlog P) 

1 high no 

 

yes 0.56 

 

3.33 -3.22 2.32 

2 high no 

 

yes 0.55 

 

1.81 0.54 0.05 

3 low no 

 

yes 0.11 

 

3.75 -5.47 3.59 

4 high yes yes 0.55 

 

2.22 -4.01 3.16 

5 low no 

 

no 

 

0.11 

 

4.69 - 6.50 4.39 

6 low no 

 

yes 0.11 

 

4.54 - 5.34 3.42 

7 high yes yes 0.55 

 

2.56 -4.42 3.64 

8 high yes yes 0.55 

 

3.19 -4.86 4.14 

9 tinggi no 

 

yes 0.55 

 

2.78 -3.20 1.00 

10 high yes yes 0.55 

 

3.22 -3.69 1.48 

11 high yes yes 0.55 

 

3.23 -3.85 2.04 
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3.3 Ligand Toxicity Properties 

Prediction of the toxicity of ligand molecules is carried out in a virtual laboratory 

(https://tox-new.charite.de/protox_II) and this is an important part in the search for new drugs or 

new drug design. Computational toxicity estimation is not only faster than determining toxic doses 

in animals, but can also help reduce the number of animal experiments. In this study, nine (9) 

ligand molecules obtained from the ZINC15 database, a native ligand and a control ligand (L-

DOPA) were subjected to molecular docking tests (autodock Vina). The toxicity of the ligand 

molecule is then predicted based on the parameters hepatotoxicity, carcinogenicity, 

Phosphoprotein (Tumor Suppressor) p53 and LD50. Toxicity and LD50 of selected ligands are listed 

in Table 4. 

The toxic dose is often given as the LD50 value in mg/kg body weight. The LD50 is the 

average lethal dose which means the dose at which 50% of test subjects die when exposed to a 

compound. Toxicity classes are determined based on the globally harmonized chemical labeling 

classification system (GHS). LD50 values are given in [mg/kg]. The labeling classification of 

chemicals is stated in classes I to VI, namely class I: fatal if swallowed (LD50 ≤ 5), class II: fatal if 

swallowed (5 < LD50 ≤ 50), Class III: toxic if swallowed (50 < LD50 ≤ 300), class IV: dangerous if 

swallowed (300 < LD50 ≤ 2000), class V: possibly dangerous if swallowed (2000 < LD50 ≤ 5000), and 

class VI: non-toxic (LD50 > 5000). Based on the data in Table 4.3, it is known that there are four (4) 

ligands in class V (ligand NO. 3-6), five (5) ligands in class IV (ligand NO. 1, 2, 7, 8 and 9) and the 

remaining entered class II (ligands No. 10 and 11). Hepatotoxicity, carcinogenicity, and 

Phosphoprotein (Tumor Suppressor) p53 in eleven ligands are predicted to be inactive and have a 

small probability. Therefore, the complex formed from ligands number 3, 4, 5, and 6 can be 

followed up for further research such as the stability of the ligand in the complex over a sufficient 

period of time through molecular dynamics simulations, in vitro and in vivo ligand tests. 

 

Table 4 Toxicity and LD50 of selected ligands 

 

Number 

Ligand 

Hepatotoxicity Carcinogenecity Phosphoprotein 

(Tumor Supressor) 

P53 

Ld50 (Mg/Kg) 

1 inactive 

probability 

=0.64 

inactive 

probability 

=0.59 

inactive 

probability =0.99 

687 

2 inactive 

probability 

=0.58 

inactive 

probability 

=0.66 

inactive 

probability =0.75 

1460 

3 inactive 

probability 

=0.65 

inactive 

probability 

=0.64 

inactive 

probability =0.81 

4300 

4 inactive 

probability 

=0.66 

inactive 

probability 

=0.69 

inactive 

probability =0.83 

3000 

5 inactive 

probability 

=0.60 

inactive 

probability 

=0.64 

inactive 

probability =0.73 

5000 

6 inactive 

probability 

=0.70 

inactive 

probability 

=0.67 

inactive 

probability =0.71 

5000 

7 inactive inactive inactive 

probability =0.83 

650 
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Number 

Ligand 

Hepatotoxicity Carcinogenecity Phosphoprotein 

(Tumor Supressor) 

P53 

Ld50 (Mg/Kg) 

probability 

=0.84 

probability 

=0.69 

8 inactive 

probability 

=0.71 

inactive 

probability 

=0.64 

inactive 

probability =0.83 

500 

9 inactive 

probability 

=0.77 

inactive 

probability 

=0.69 

inactive 

probability =0.88 

598 

10 inactive 

probability 

=0.89 

inactive 

probability 

=0.88 

inactive 

probability =0.94 

19 

11 inactive 

probability 

=0.73 

inactive 

probability 

=0.83 

inactive 

probability =0.92 

61 

 

 

4.3 Conformational stability of the ligand (9)-2v5z complex 

The stability of the ligand (9)-2v5z complex resulting from molecular dynamics simulations 

is indicated by fluctuations in the protein-ligand RMSD graph shown in Figure 6. 

  

 

 
Figure 6 Fluctuations of the ligand (9)-2v5z complex 

 

The plot above shows the RMSD evolution of a protein (left Y-axis). All protein backbones 

are first aligned on the reference frame backbone, then RMSD is calculated based on the atom 

selection. Monitoring a protein's RMSD can provide insight into its structural conformation across 

parts of the simulation. RMSD analysis can show whether the simulation has reached equilibrium 

— its fluctuations towards the end of the simulation are around some thermal mean structure. 

Changes of the order of 1–3 Å are perfectly acceptable for small globular proteins. However, changes 

much larger than that indicate that the protein did undergo large conformational changes during the 

simulation. It is also important that the simulation converges — the RMSD value stabilizes around 
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a fixed value. If the protein RMSD is still increasing or decreasing on average at the end of the 

simulation, then your system has not reached equilibrium, and the simulation system may not be 

long enough for a thorough analysis. Ligand RMSD (right Y-axis) shows how stable the ligand is to 

the protein and its binding pocket. In the plot above, 'Lig fit Prot' shows the RMSD of a ligand when 

the protein-ligand complex is first aligned on a reference protein backbone and then the RMSD of 

the heavy atoms of the ligand is measured. If the observed value is significantly greater than the 

RMSD of the protein, it is likely that the ligand has diffused away from its initial binding site. 

The Ligand-protein interactions can also be observed in Figure 7, 

 

 
Figure 7 The Ligand-protein interactions 

 

Protein interactions with ligands can be monitored throughout the simulation. These 

interactions may occur categorized by type and summarized, as shown in the plot above. Protein-

ligand interactions (or 'contacts') are categorized into four types: Hydrogen Bonding, Hydrophobic, 

Ionic and Water Bridges. Each interaction type contains more specific subtypes, which can be 

explored via the 'Simulation Interaction Diagram' panel. The stacked bar charts are normalized along 

the trajectory: for example, a value of 0.7 indicates that 70% of the simulation time a specific 

interaction is maintained. Values over 1.0 are possible because some protein residues can make 

multiple contacts of the same subtype with the ligand. Hydrogen Bonds: (H Bonds) play an 

important role in ligand binding. Consideration of hydrogen bonding properties in drug design is 

important because of its strong influence on drug specificity, metabolism and adsorption. Hydrogen 

bonds between proteins and ligands can be further broken down into four subtypes: backbone 

acceptor; contributing spine; side chain acceptor; side chain donor. Current geometric criteria for 

protein–ligand H bonds are: 2.5 Å distance between donor and acceptor atoms (D—H···A); donor 

angle ≥120° between donor-hydrogen-acceptor atoms (D—H···A); and an acceptor angle of ≥90° 

between the atoms bound to the hydrogen acceptor (H···A—X). Hydrophobic contacts: divided into 

three subtypes: π-Cation; π-π; and other non-specific interactions. Generally this type of interaction 

involves a hydrophobic amino acid and an aromatic or aliphatic group on the ligand, but we have 

expanded this category to also include π-Cation interactions. The current geometric criteria for 

hydrophobic interactions are as follows: π-Cation — Aromatic groups and charged groups within 

4.5Å; π-π — Two aromatic groups arranged opposite or opposite each other; Other — Non-specific 

hydrophobic side chains within 3.6 Å of the aromatic or aliphatic carbon of the ligand. Ionic 

interactions: or polar interactions, occur between two oppositely charged atoms that are within 3.7 

Å of each other and do not involve hydrogen bonds. We also monitor Protein-Metal-Ligand 

interactions, which are determined by metal ion coordination within 3.4 Å of protein and ligand 

heavy atoms (except carbon). All ionic interactions are broken down into two subtypes: those 

mediated by the protein backbone or side chains. Water Bridge is a hydrogen bonded protein-ligand 
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interaction mediated by water molecules. Hydrogen bond geometry is slightly looser than the 

standard H-bond definition. The current geometric criteria for protein–water H bonds or water 

ligands are: a distance of 2.8 Å between the donor and acceptor atoms (D—H···A); donor angle ≥110° 

between donor-hydrogen-acceptor atoms (D—H···A); and an acceptor angle ≥90° between the 

hydrogen-bonded acceptor atoms (H···A—X) 

 

4. CONCLUSION 

The conclusions that can be drawn from the molecular docking studies resulting from 

ZINC15 database screening and Swissadme and Protox-II predictions as well as DM simulations are: 

a. There are 9 molecules that have a binding affinity value that is smaller than the binding affinity 

of the natural ligand and the control ligand. Ligand and residue interactions are dominated by 

hydrogen bonds, donor-donor and pi-pi stacked interactions. 

b. According to Swissadme's predictions, the ligands that are predicted to be orally active and 

cannot pass through the BBB and will not cause side effects are ligands number 1, 2, 3, 5, 6, and 

9 while ligand numbers 4, 7, 8, 10, and 11 can cross the BBB and may cause side effects. 

c. Based on the results of toxicity prediction (PROTOX-II), it is known that there are four (4) 

ligands in class V, five (5) ligands in class IV and the rest in class II. Hepatotoxicity, 

carcinogenicity, and Phosphoprotein (Tumor Suppressor) p53 in eleven ligands are predicted 

to be inactive and have a small probability. 

d. Ligand-protein fluctuations in the complex originating from the ligand 

[CC(C)c1ccc(NC(=O)Cn2cnc3c2c(=O)n(C)c(=O)n3C)cc1]-2v5z is still high, which 

indicates that the conformation is not yet stable. 
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