
Elinvo (Electronics, Informatics, and Vocational Education) ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)
Vol 10, No. 1, 2025, pp. 63-77

10.21831/elinvo.v10i1.78722 https://journal.uny.ac.id/index.php/elinvo

Optimizing 4-ary Huffman Trees and Normalizing Binary Code Structures
to Minimize Redundancy and Level Reduction

Tonny Hidayat 1*, Hendra Kurniawan 1, Ali Mustopa 1, Jeki Kuswanto 1

1Universitas Amikom Yogyakarta, Sleman, Indonesia
tonny@amikom.ac.id*; hendrakurniawan@amikom.ac.id, ali.m@amikom.ac.id; jeki@amikom.ac.id;

* corresponding author

Article Info Abstract

Article history:
Received October 31, 2024
Revised February 24, 2025
Accepted April 29, 2025

 Since the present data expansion and increase are occurring at an
increasingly rapid pace, the solution of adding storage space is not
sustainable in the long run. The growing need for storage media can
be addressed with lossless compression, which reduces stored data
while allowing complete restoration. Huffman remains a potent
method for data compression, functioning as a "back end" process and
serving as the foundational algorithm in applications, among others,
Monkey's PKZIP, WinZip, 7-Zip, and Monkey's Audio. Lossless
compression of 16-bit audio requires binary structure adjustments to
balance speed and optimal compression ratio. The use of a 4-ary
Huffman tree (4-ary) branching procedure to generate binary code
generation and to insert a maximum of 2 dummy data symbol variables
that are given a binary value of 0 with the condition that if the number
of MOD 3 data variables = remaining 2, then two dummy data are
added, if the result is the remainder 0 = 1 dummy data, and if the
remainder = 1 then it is not required. This process effectively
maintains a high ratio level while speeding up the 4-ary Huffman code
algorithm's performance in compression time. The results show that
the efficiency reaches 95.94%, the ratio is 38%, and the comparison is
1/3 of the Level based on calculations, testing, and comparison with
other generations of the Huffman code. The 4-ary algorithm
significantly optimizes archived data storage, reducing redundancy to
0.124 and achieving an entropy value of 2.91 across various data types.

This is an open access article under the CC–BY-SA license.

Keywords:
Lossless; Compression; Huffman;
Binary; Audio

*Corresponding Author:
Email: tonny@amikom.ac.id

INTRODUCTION

The demand for storage media is expanding because, in today's digital age, everyone may
quickly create, process, and reproduce their personal documentation in audio, text, and video formats
[1]. As digital tools and technologies become more accessible, people are generating and sharing more
data than ever before, which may cause an increase in digital content volume. This surge in data creation
necessitates larger and more efficient storage solutions to accommodate the vast amounts of information
being produced and stored by individuals and organizations alike.

One of the processes involved in digital file formatting is compression, which can be lossless or
lossy [2]. The nature and requirements of lossless compression require that compressed files can be
returned to their original condition with no damage or flaws. If data is not needed for an extended period
of time, it is normally archived (stored) [3]. In such circumstances, the solution is to use lossless

http://creativecommons.org/licenses/by-sa/4.0/

Elinvo (Electronics, Informatics, and Vocational Education), 10(1), May 2025 - 64
ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)

Tonny Hidayat, et al. (Optimizing 4-ary Huffman Trees and Normalizing Binary Code Structures to Minimize ...)

compression for archiving purposes, with the performance indication being the compression ratio and
duration [4].

Audio compression is essential due to the large size of high-quality audio files (e.g., 16-bit or
24-bit), which consume significant storage space. Compression reduces file sizes, enabling efficient
storage and transmission while preserving audio quality, crucial for music production, archival, and
broadcasting [5]. Industries relying on audio compression include music and entertainment (e.g.,
recording studios, Spotify, Apple Music), broadcasting (radio, TV), and telecommunications (VoIP,
video conferencing). By using audio compression, these sectors balance storage efficiency, cost savings,
and audio quality, ensuring digital audio remains accessible and practical across applications.

One of the algorithms that can be used is Huffman. This algorithm is compact without any loss,
since it can be utilized as a "back-end" operation with other techniques [6]. As of yet, no specific study
has been conducted on the use of the Huffman technique to compact 16-bit of the audio data of WAV
that strikes a compromise between compacting ratio and compacting time. The study provides a chance
to investigate novel techniques to improve compression efficiency and speed for high-quality audio
formats.

Almost all lossless compression software on the market, including WinZip, WinRAR, and 7-
Zip, is based on the Huffman algorithm [7]. The goal now is for academics to build a binary data
structure for a file that is both efficient in size and stable when altered. Achieving this would require
innovative approaches to optimize the Huffman algorithm, such as exploring multi-level tree structures
or hybrid compression techniques. Audio files in wav format are RAW files that are typically stored on
a 16-bit file system with data symbol variations ranging from 0 to 65,536 [8]. This condition prevents
each component of the audio file from being patterned in general, as well as compression from achieving
its maximum ratio.

A unique compression approach was introduced by Banetley et al., with an approach that was
structured identically to the process of the Huffman algorithm, but has certain practical benefits; it
compresses the data in a single traversal [9]. Huffman-based approaches were also described in this
introduction to generate an optimal compact code [10]. The speed of this decoding is slow. Based on
the ACW algorithm, Bahadili and Hussain established an alternative bit-level adaptive data compression
approach that exceeded several widely employed compression methods in terms of compression ratio.
[11].

Hermassi et al. proved that an image can be encoded using multiple codewords of identical
length [12]. An alternative novel decoding technique was described by Chowdhury et al. for pseudo-
static Huffman codes, exhibiting a highly fast representation of the Huffman header [13]. Suri and Goel
investigated the utilization of ternary trees and developed a novel one-pass technique to describe
adaptive Huffman codes [14]. Huffman suggested an algorithm as an encoder for reducing data and
stated that no two signs would include the same sequence of codes, and that the code that results from
the reconstitution of the data bits, and that no further settings need to be made to determine where the
code starts and concludes, once the starting point is known [15]. Beginning with the publication of the
Huffman coding technique and the achievement of a minimum redundancy value, this algorithm became
quite popular for compressing text data before moving on to other forms of data, particularly images
[16], [17]. Schack explains the length code in his study; the lengthy codeword for the Huffman and
Shannon-Fano algorithms has the same interpretation [18]. Katona and Nemetz investigated the
relationship between the self-information of the source symbol and the length of its codeword [18]

In another work, Hashemian proposed a new data compression strategy based on the notion of
clustering. The algorithm states that this new approach will use mini-mother storage while searching for
symbols at a fast speed [19]. He found that the clustering method approach is quite effective in
compressing video data in his experiments. Chung proposed an array-based structure for data for
Huffman networks involving a memory demand of 3n minus 2 [15]. This structure was decoded using
a fast algorithm, which is accomplished by reducing the memory from 3n - 2 to 2n - 3, where n is the

Elinvo (Electronics, Informatics, and Vocational Education), 10(1), May 2025 - 65
ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)

Tonny Hidayat, et al. (Optimizing 4-ary Huffman Trees and Normalizing Binary Code Structures to Minimize ...)

number of symbols. Based on a formula by chen in 1999 which is still used today to create a fast
decoding algorithm with time O(log n) and memory space ⌈3n/2⌉ + ⌈(N/2) log n⌉ + 1 [17].

Fenwick stated that there was some inefficiency in utilizing the Huffman code [20]. It showed
there was a fault during the change between the low and the higher extensions. Szpankowski and Baer
state the minimum size of the predicted length of fixed-to-variable lossless compression under prefix-
out constraints [21], [22]. Kavousianos creates a variable-to-variable code by using the Huffman
principle, sometimes referred to as fixed-to-variable codes [23]. Vitter created an innovative method
for online compression in networks in his paper [24]. Huffman codes were first used in database
compression by Habib et al. [25]. Gallager explained four properties of the Huffman code, including
the symbol frequency property, the codeword length property, the sibling property, and the upper bound
property [26]. Additionally, he demonstrated the flexible Huffman coding method. In the other research,
coding techniques were created for every type of source symbol [27], [28]. In order to achieve efficient
Huffman decoding, Lin et al. first converted the basic Huffman tree to a recursive Huffman tree. They
then used the recursive Huff algorithm to decode several symbols simultaneously [29]. It makes faster
decoding possible. Zopfli, a compression tool that uses the Binary Huffman algorithm technique, was
recently published by Google Inc. One of Google Inc.'s best compression algorithms, Zopfli, was
released. According to Google, Zopfli's compression ratio is the best [30].

Communication systems, statistics, and probability theory all make substantial use of
information theory. To address this issue, lossless coding techniques are employed, such as the Huffman
stationary binary algorithm [15], the Shannon method [31], arithmetic codes [32], the Fano method [33],
and the updated Fano-based technique for coding [34]. Alakuijala in 2019 created and documented an
adaptive variant of this strategy. Adaptive variations of this tactic have been proposed and implemented
well [30], [35]. Developing an innovative structure for the length of a binary data bit utilizing the
Huffman tree algorithm scheme on 16-bit data to strike a compromise between Compression Ratio and
Compression Time in WAV format music files. This study fills a vacuum in the literature by comparing
the compression ratios and times of Huffman algorithm variations.

This study was to build the structure for a 16-bit data set using the Huffman tree algorithm to
find the association between Compression Ratio (CR) and Compression Time (CT), which is required
to improve the efficiency of the Huffman algorithm for data compression. This study investigates the
intersection between efficiency, length average, variances, and the last result, which will be compared
with CR and CT.

METHODS

The research employs an experimental approach to optimize the stability between file size
reduction and compression speed in the processing of the 16-bit WAV audio data saved on the storage
device.. The methodology involved collecting 16-bit WAV audio data to develop and test multiple
Huffman-based code generation strategies. According to Ali et al. (2011), the mean size is increasing at
a rate of approximately 30% annually [36]. To address this challenge, this study focuses on designing
and evaluating Huffman algorithm variations aimed at improving both the CR and CT, thereby
enhancing storage efficiency and broader IT applications [37]. Several Huffman-based techniques will
be implemented to construct binary trees that allocate data bits dynamically in response to increasing
file size trends. The experimental design considers both the Compression Ratio and Compression Time
for 16-bit data, which consists of 65,536 unique symbol variants, in contrast to 8-bit data, which has
only 256 symbol variants [38].

The expanded Huffman technique may be applicable to data formats other than audio data, which
is the focus of this study. Conceptually, the technique can be used to text files, photos, and videos. Like
a reminder, like with music, the volume of data that must be kept for image and video data presents
storage medium and infrastructural difficulties. Video and image data have already been compressed,

Elinvo (Electronics, Informatics, and Vocational Education), 10(1), May 2025 - 66
ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)

Tonny Hidayat, et al. (Optimizing 4-ary Huffman Trees and Normalizing Binary Code Structures to Minimize ...)

but improvements such as enhanced Huffman algorithms that can increase Compression Ratio and Time
Compression will provide an IT solution addressing the challenge of preserving authenticity while
expanding information retention on storage media made especially for data archiving.

To ensure that an algorithm works optimally, a mathematical calculation can be performed to
ensure its performance before entering the programming and assembly stages. Entropy coding includes
the Huffman algorithm, which allows for a calculation to be performed in phases using the following
parameters. The mathematical calculation steps used to analyze the Huffman compression process are
shown in Figure 1.

Figure 1. Step-by-step for a calculation

Total Length (TL)

The variables that must be set are the numerous symbol variants, their frequencies, and
probabilities, to calculate the Total Length (number of bits) as the size of the uncompressed data
(source).

𝑇𝑇𝑇𝑇 = ∑ (𝑓𝑓𝑓𝑓 × 𝑙𝑙𝑙𝑙𝑛𝑛
𝑖𝑖=1) ... (1)

where:
fi = frequency of symbol i
li = Huffman length code assigned to symbol i
n = total number of unique symbols in the dataset

Entropy (H)

The entropy calculation method can be used to determine the data encoding value in terms of bits
per symbol (bps), as the closer it is to bps, the more efficient the compression algorithm.

𝐻𝐻 = −∑ (𝑃𝑃𝑖𝑖 × 𝑙𝑙𝑙𝑙𝑙𝑙2(𝑃𝑃𝑖𝑖))𝑚𝑚
𝑖𝑖=1 ... (2)

where:
Pi = i-symbol probability
log2(Pi) = logarithm base 2 of the probability of a symbol

Average Length (𝑳𝑳𝒂𝒂𝒂𝒂)

The length of a message must be equalized and averaged in order to normalize the length of each
data symbol character.

𝐿𝐿𝑎𝑎𝑎𝑎 = −∑ 𝑃𝑃𝑖𝑖 × 𝑛𝑛
𝑖𝑖=1 𝑛𝑛𝑖𝑖 ... (3)

where:
ni = length of the Huffman code assigned to symbol i

Elinvo (Electronics, Informatics, and Vocational Education), 10(1), May 2025 - 67
ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)

Tonny Hidayat, et al. (Optimizing 4-ary Huffman Trees and Normalizing Binary Code Structures to Minimize ...)

Redundancy (R)

The difference of length between 𝐿𝐿𝑎𝑎𝑎𝑎 and H will produce a value where the smaller the result,
the more optimal the performance of the algorithm.

𝑅𝑅 = 𝐿𝐿𝑎𝑎𝑎𝑎 − 𝐻𝐻(𝑋𝑋) .. (4)

Code Efficiency (CE)

To ensure the advanced level of the optimization process, an efficiency calculation process can
be carried out on the influence of the length of the binary code variable.

𝐶𝐶𝐶𝐶 = 𝐻𝐻(𝑋𝑋)/𝐿𝐿𝑎𝑎𝑎𝑎 × 100% ... (5)

Variances (V)

The variance means the wide of number set and variance is used to measure the average length.
The value of zero means identical for all values. There is no negative variance and low variance means
that the data is near the mean and others. The large variance indicates the far of the mean from other
numbers.

𝑉𝑉 = 𝜎𝜎2 = 𝐸𝐸(𝛼𝛼𝑖𝑖 − 𝐴𝐴)2 = 1
𝑛𝑛
∑ (𝛼𝛼𝑖𝑖 − 𝐴𝐴)2𝑛𝑛
𝑖𝑖=1 .. (6)

Total Code (TC)

Following the compression process, it is required to determine how much total code is created by
looking at the frequency value of each symbol as well as the code length.

𝑇𝑇𝑇𝑇 = ∑ 𝑡𝑡𝑡𝑡′ × 𝑓𝑓𝑛𝑛
𝑖𝑖=1 ... (7)

Compression Ratio (CR)

In the final process, the most common main performance indicator is calculating the comparison
ratio before and after compression.

𝐶𝐶𝐶𝐶 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇

 × 100% ... (8)

Saving Space (SS)

 Another calculation to facilitate descriptive assessment is how much savings are generated by
calculating saving space

𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇−𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇

 × 100% ... (9)

Proposed Huffman With 4-Ary

In binary, there are several levels of branches that can be used, which is known as code generation.
Branching 4, also known as 4-ary in this paper, will be ensured to be optimal for processing 16-bit data
in order to achieve a balanced result (high fixed ratio with fast compression process) between CR and
CT. Based on related research and consideration of mathematical calculations, it needs to be proven by
the following simulation process.

As an initial calculation, it can be done by simulation using sample data in Table 1, with a 16-bit
file system.

Elinvo (Electronics, Informatics, and Vocational Education), 10(1), May 2025 - 68
ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)

Tonny Hidayat, et al. (Optimizing 4-ary Huffman Trees and Normalizing Binary Code Structures to Minimize ...)

Table 1. Sample Data

Symbol Freq Prob
Sy1 35 0.35
Sy2 21 0.21
Sy3 15 0.15
Sy4 8 0.08
Sy5 5 0.05
Sy6 3 0.03
Sy7 2 0.02
Sy8 1 0.01
Sy9 1 0.01

Sy10 1 0.01
Sy11 1 0.01
Sy12 1 0.01
Sy13 1 0.01
Sy14 1 0.01
Sy15 1 0.01
Sy16 1 0.01
Sy17 1 0.01
Sy18 1 0.01
Total 100 1

TL = 35x8 + 21x8 + 15x8 + 8x8 + 5x8 + 3x8 + 2x8 + 1x8 + 1x8 + 1x8 + 1x8 + 1x8 + 1x8 + 1x8 + 1x8

+ 1x8 + 1x8 + 1x8

 = 800 bit

H = - (0.35log20.35 + 0.21log20.21 + 0.15log20.15 + 0.08log20.08 + 0.05log20.05 + 0.03log20.03 +

0.02log20.02 + 0.01log20.01 + 0.01log20.01 + 0.01log20.01 + 0.01log20.01 + 0.01log20.01 +

0.01log20.01 + 0.01log20.01 + 0.01log20.01 + 0.01log20.01 + 0.01log20.01 + 0.01log20.01)

 = 2.916541606 bits/symbol

To optimize the organization of the sample data table in Table 1. The frequency is then normalized
by situating it with the value that has been added to the top position against the same value; this
procedure is repeated, as shown in Figure 2.

Figure 2. 6 4-ary Normalization

Elinvo (Electronics, Informatics, and Vocational Education), 10(1), May 2025 - 69
ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)

Tonny Hidayat, et al. (Optimizing 4-ary Huffman Trees and Normalizing Binary Code Structures to Minimize ...)

The above-mentioned reconstruction findings considerably improve the speed and structure of
the new binary structure in Table 2. The lowest code is two codes long and represents the symbol with
the highest frequency or likelihood. The largest code has a length of 8 codes and represents the symbol
with the lowest frequency or likelihood. The longest code consists of eight codes and reflects the sign
with the smallest chance.

Table 2. List of Symbols and Code for Encoding

Symbol Code length P(i)L(i) Variances
Sy1 00 2 0.7 0.132496
Sy2 10 2 0.42 0.047699
Sy3 11 2 0.3 0.024336
Sy4 0101 4 0.32 0.005898
Sy5 0110 4 0.2 0.002304
Sy6 010010 6 0.18 0.007885
Sy7 010011 6 0.12 0.003505
Sy8 011100 6 0.06 0.000876
Sy9 011101 6 0.06 0.000876

Sy10 011110 6 0.06 0.000876
Sy11 011111 6 0.06 0.000876
Sy12 01000000 8 0.08 0.002460
Sy13 01000001 8 0.08 0.002460
Sy14 01000010 8 0.08 0.002460
Sy15 01000011 8 0.08 0.002460
Sy16 01000100 8 0.08 0.002460
Sy17 01000101 8 0.08 0.002460
Sy18 01000110 8 0.08 0.002460
dm0 01000111 8 0 0.000000

 Average Length L = 3.04 0.244849

The following steps of the process's calculation, after obtaining the aforementioned data, are:
𝐿𝐿𝑎𝑎𝑎𝑎 = 0.35 x 2 + 0.21 x 2 + 0.15 x 2 + 0.08 x 4 + 0.05 x 4 + 0.03 x 6 + 0.02 x 6 + 0.01 x 6 + 0.01 x 6 + 0.01 x 6 +

0.01 x 6 + 0.01 x 8 + 0.01 x 8 + 0.01 x 8 + 0.01 x 8 + 0.01 x 8 + 0.01 x 8 + 0.01 x 8 + 0 x 8

 = 3.04 bits/symbol

R = 3.04 - 2.916541606

 = 0.123458 bits/symbol

CE = (2.916541606 / 3.04) x 100%

 = 95.93887 %

V = 0.35(2 – 3.46)2 + 0.21(2 – 3.46)2 + 0.15(2 – 3.46)2 + 0.08(4 – 3.46)2 + 0.05(4 – 3.46)2 + 0.03(6 – 3.46)2

+ 0.02(6 – 3.46)2 + 0.01(6 – 3.46)2 + 0.01(6 – 3.46)2 + 0.01(6 – 3.46)2 + 0.01(6 – 3.46)2 + 0.01(8 –

3.46)2 + 0.01(8 – 3.46)2 + 0.01(8 – 3.46)2 + 0.01(8 – 3.46)2 + 0.01(8 – 3.46)2 + 0.01(8 – 3.46)2 + 0.01(8

– 3.46)2 + 0(8 - 3.46)2

 = 0.244849

TC = 35x2 + 21x2 + 15x2 + 8x4 + 5x4 + 3x6 + 2x6 + 1x6 + 1x6 + 1x6 + 1x6 + 1x8 + 1x8 + 1x8 + 1x8 + 1x8

+ 1x8 + 1x8 + 0x8

 = 304 bit

CR = (TC / TL) x 100%

 =(304 / 800) x 100 %

 = 38 %

SS = ((TL – TC) / TL) x 100%

 = ((800 – 304) / 800) x 100%

 = 62%

Elinvo (Electronics, Informatics, and Vocational Education), 10(1), May 2025 - 70
ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)

Tonny Hidayat, et al. (Optimizing 4-ary Huffman Trees and Normalizing Binary Code Structures to Minimize ...)

Table 3 displays the results of a 4-ary tree with normalization. The findings reveal a
Compression Ratio of 38%, which is nearly identical to employing a binary tree (37.25%), with a storage
savings of 62%. The efficiency level is 95.93887%, which is similar to a binary tree with a gap of only
2.5%. As a result, this 4-ary should be improved and tested with a variety of compressed data types. The
4-ary is likewise updated using a reversed layout strategy.

Table 3. Compression Results with 4-ary / Modified Quad Tree with Tree Normalization

Information Result
Length (TL) ASCII 800

 Entropy (H) 2.916542
Average Length (Lav) 3.04

Total Code (TC) 304
Compression Ratio (CR) 38%

Saving Space (SS) 62%
Redundancy (R) 0.123458
Variances (V) 0.244849

Efficiency (CE) 95.93887
Level 5

RESULT AND DISCUSSION

The proposed design produces findings that are consistent with the objectives of this research,
hence the following guidelines can be made: (1) Data on the number of variables and their corresponding
frequency/probability values are then gathered from the input stream (16-bit WAV audio); (2) To find
the quantity of fake data, measure the number of "Data variables" in the incoming data stream; (3) The
data of “Data variables" is divisible by three (MOD 3), calculate quantity of fake data using the following
guidelines (for a mod result of two, there are two bogus data variables, fake data is counted as
one when the mod result is zero, fake data is unnecessary if the mod result is 1. "ariables" is
divisible by three (MOD 3); (4) To establish four fixed branches (after the root), add a dummy
variable "dm" with a frequency of 0 and probability of 0; (5) Add the total data variables and the variety
of simulated variables (dm); (6) Organize data and fictional variables by frequency or probability,
from greatest to smallest; (7) To form a coding tree, the newly established node containing the exact
same value will be placed above the previous node with the same number if the sum of the preceding
nodes yields the equivalent frequency/probability ratio; (8) Code assignment: Left = 00, Left-Mid
 = 01, Right-Mid = 01, Right = 11.

A large collection of 1,500 samples split into four categories—instruments, voices of humans,
unplanned noise, and music—is used to evaluate the success of the rules developed. The following
sample size formula is used to determine the sample size needed for findings that are statistically
significant: (Z-score)² - StdDev×(1-StdDev)³ (Confidence Level)² = Required Sample SizeSize was
calculated using a 90% confidence level (Z-Score 1.645), a 0.5 standard deviation, and an
acceptable range of +/- 5% (0.05).

The range of confidence is the range of error plus or minus 5% in the given results. The Z-score
(Confidence Level) expresses how sure the findings will be within the intended margin of error. When
a more exact standard deviation is unknown, the number 0.5 is used. This guarantees that the sample is
large enough. Using this technique, it became clear that a sample size of 1,500 was necessary to get
statistically significant results. Due to the huge amount of audio material available for testing, the
smallest number of samples (500 each category) was chosen and examined in this study, totalling
roughly 9,000.

Elinvo (Electronics, Informatics, and Vocational Education), 10(1), May 2025 - 71
ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)

Tonny Hidayat, et al. (Optimizing 4-ary Huffman Trees and Normalizing Binary Code Structures to Minimize ...)

The dataset sources differ in order to improve the diversity of audio kinds to be compressed; here
is a description of the dataset sources used:
1. MUSAN: A Music, Speech, and Noise Corpus (David Snyder and Guoguo Chen and Daniel Povey)

2015 [39]. Link: http://www.openslr.org/17/
2. J. Bosch, R Marxer, and E. Gomez. Evaluation and combination of pitch estimation methods for

melody extraction in symphonic classical music. Journal of New Music Research 2016 [40]. Link
: https://zenodo.org/record/1289786#.XUubA-gzZqP

3. IRMAS-Bosch, J. J., Janer, J., Fuhrmann, F., & Herrera, P. “A Comparison of Sound Segregation
Techniques for Predominant Instrument Recognition in Musical Audio Signals”, in Proc. ISMIR
(pp. 559-564), 2012 [41]. Link: https://zenodo.org/record/1290750#.XUujEegzZqM

4. FSDnoisy18k - Eduardo Fonseca, Manoj Plakal, Daniel P. W. Ellis, Frederic Font, Xavier Favory,
and Xavier Serra, “Learning Sound Event Classifiers from Web Audio with Noisy Labels”, arXiv
preprint [42]. arXiv:1901.01189, 2019. Link: https://zenodo.org/record/2529934#.XUulsegzZqN

5. Music Track With CD quality- Robin Whittle. Lossless audio compression, 2000-2005 [16]. Link:
http://www.firstpr.com.au/audiocomp/lossless/#rice

After analyzing it on the dataset, the audio kinds are classified into eight groups: music, music

mono, music stereo, ripping CD, speech, noise, sound effects and instruments. To compare different
variations of the Huffman technique, many categories are used.

The mean number obtained from the equation that comes next (15) is used for contrasting CR on
various variants within the Huffman Tree scheme and the 4-ary approach, which is a development of
the Huffman technique on every audio type, as shown in Table 4.

𝐶𝐶𝐶𝐶����𝑖𝑖,𝑗𝑗 =
∑𝑋𝑋𝑖𝑖,𝑗𝑗
𝑁𝑁𝑖𝑖,𝑗𝑗

 .. (10)

Note:
𝐶𝐶𝐶𝐶���� : The average CR value of i on j
i : Audio types
j : Huffman variance components
∑𝑋𝑋𝑖𝑖,𝑗𝑗 : The total of the component members of Huffman i in j
𝑁𝑁𝑖𝑖,𝑗𝑗 : The number of component members i in j

It can be calculated as below :

Table 4. CR Huffman Tree Scheme Variants

Type Audio Average (all) CR(%)
Static Dynamic Quad Okta Hexa 4-ary

Music 54.44 49.92 50.74 54.45 57.04 60.44 54.03
Music mono 46.19 42.25 42.33 46.01 49.02 52.01 45.49
Music stereo 48.12 44.07 44.29 47.87 51.09 53.99 47.43
Ripping CD 55.32 45.59 45.63 58.06 60.61 64.13 57.86

Speech 48.23 41.38 41.77 49.45 52.52 55.46 48.85
Noise 46.36 41.74 42.42 46.49 49.67 52.23 45.59

Sound effects 37.84 32.84 33.49 38.06 41.64 44.30 36.72
Instruments 51.11 47.24 47.78 50.77 53.95 56.60 50.35

The difference between the final CR value and the average CR value, which is a function of the

descriptive analysis results, indicates that the CR value sequence pattern works well for a variety of file
types. Please refer to the following Table 5 for further information:

Elinvo (Electronics, Informatics, and Vocational Education), 10(1), May 2025 - 72
ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)

Tonny Hidayat, et al. (Optimizing 4-ary Huffman Trees and Normalizing Binary Code Structures to Minimize ...)

Table 5. Difference Between CR 4-ary and Average

Audio type CR 4-ary (%) Average CR (%) Deviation
Music 54.03 54.44 -0.41

Music Mono 45.49 46.19 -0.70
Music Stereo 47.43 48.12 -0.69
Ripping CD 57.86 55.32 +2.55

Speech 48.85 48.23 +0.61
Noise 45.59 46.36 -0.87

Sound Effect 36.72 37.84 -1.12
Instruments 50.35 51.11 -0.76

The desired result is a decreased CR difference from the average CR value. According to the table
above, there are six (six) types of audio files with a negative difference (-) and two (two) types of files
with a positive difference value (+). The positive sign (-) indicates that the 4-ary application produces a
lesser CR score than the median for the 6 (six) kinds of audio files. As a consequence, when compared,
it is evident that the 4-ary software is quite effective at file compression.

To get an overall impression of the data as a whole based on the Huffman variance components,

use the following Eq. (16) to calculate the average:

𝐶𝐶𝐶𝐶����𝑗𝑗 =
∑𝑋𝑋𝑗𝑗
𝑁𝑁𝑗𝑗

 ... (11)

Note:
𝐶𝐶𝐶𝐶���� : The average CR value of j
j : Huffman variance components
∑𝑋𝑋𝑗𝑗 : Total of values of the members j
𝑁𝑁𝑗𝑗 : Number of members j

In light of the overall CR value of the audio data compression findings, the 4-ary
application (48.29%) is less efficient than the Static (43.13%) and Dynamic (43.56%)
variations. For further information, check Table 6.

Table 6. Average CR Huffman Tree Scheme Variant

Huffman Scheme Average CR (%) Overall Average (%) Note
Static 43.13 48.45 Below average

Dynamic 43.56 Below average
Quad 48.90 Above average
Okta 51.94 Above average
Hexa 54.89 Above average
4-ary 48.29 Below average

The remaining space following compression is referred to as "space saving." As a result, the
compressed file (CR) shrinks while the leftover space (SSc) grows. Using the following equation, a
correlation study is performed to ascertain the link between CR and SSc.

𝑟𝑟 = 𝑁𝑁∑𝑋𝑋𝑋𝑋−∑𝑋𝑋∑𝑌𝑌
�(𝑁𝑁∑𝑋𝑋2−(∑𝑋𝑋)2)(𝑁𝑁∑𝑌𝑌2−(∑𝑌𝑌)2)

 ... (12)

Note:
r : Correlation
N : The number of values
∑X : The sum of the X values
∑Y : The sum of the Y values
∑X^2 : The squared sum of each X value
∑Y^2 : The squared sum of each Y value

Elinvo (Electronics, Informatics, and Vocational Education), 10(1), May 2025 - 73
ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)

Tonny Hidayat, et al. (Optimizing 4-ary Huffman Trees and Normalizing Binary Code Structures to Minimize ...)

∑XY : The sum of each X value multiplied by each Y value
X : CR
Y : SSc

The results of the correlation analysis show a correlation value of -0.447 and a significant value
of 0.000. Based on these values, it is known that CR and SSc are correlated quite well (between 0.400 -
0.600) and inversely proportional, where the higher the CR value, the more significant the effect on the
SSc value, with the direction of change being smaller, and vice versa.

On the basis of the average value determined by the following formula, SSc on several variations
of Huffman Tree designs and 4-ary procedures on each sound type is compared.

𝑆𝑆𝑆𝑆𝑆𝑆�����𝑖𝑖,𝑗𝑗 =
∑𝑋𝑋𝑖𝑖,𝑗𝑗
𝑁𝑁𝑖𝑖,𝑗𝑗

 .. (13)

Note :
𝑆𝑆𝑆𝑆𝑆𝑆�����𝑖𝑖,𝑗𝑗 : The average SSc value of i on j
i : Types of audio (music, stereo, mono, ripping CDs, speech, noise, sound effects, and

instruments)

j : Components of the Huffman variance (Static, Dynamic, Quad, Okta, Hexa, 4-ary)

∑𝑋𝑋𝑖𝑖,𝑗𝑗 : The total value of the component members i in j
𝑁𝑁𝑖𝑖,𝑗𝑗 : The number of members of component i in j

Table 7 shows the average SSc values derived from audio data compression results utilizing the

Huffman Tree scheme version and the 4-ary technique.

Table 7. SSc Huffman Tree Scheme Variants

Type Audio Average (all)
SSc (%)

Static Dynamic Quad Okta Heksa 4-ary

Music 45.56 50.08 49.26 45.55 42.96 39.56 45.97
Music mono 53.82 57.75 57.67 53.99 50.98 47.99 54.51
Music stereo 51.88 55.93 55.71 52.13 48.91 46.01 52.57
Ripping CD 44.68 54.41 54.37 41.94 39.39 35.87 42.14

Speech 51.77 58.62 58.23 50.55 47.48 44.54 51.15
Noise 53.64 58.26 57.58 53.51 50.33 47.77 54.41

Sound Effect 62.16 67.16 66.51 61.94 58.36 55.70 63.28
Instruments 48.89 52.76 52.22 49.23 46.05 43.40 49.65

According to the comprehensive comparison, the SSc rating of the decompression results from

the 4-Response application is higher than the Quad, Octa, and Hexa versions, but it is still lower than
the capabilities of the Stability and Dynamic variants.

Table 8. Difference between 4-ary and average SSc

Audio Type SSc 4-ary (%) Average SSc (%) Deviation
Music 45.56 45.97 +0.41

Music Mono 53.82 54.51 +0.69
Music Stereo 51.88 52.57 +0.69
Ripping CD 44.68 42.14 -2.55

Speech 51.77 51.15 -0.61
Noise 53.46 54.41 +0.77

Sound Effect 62.16 63.28 +1.12
Instruments 48.89 49.65 +0.76

Elinvo (Electronics, Informatics, and Vocational Education), 10(1), May 2025 - 74
ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)

Tonny Hidayat, et al. (Optimizing 4-ary Huffman Trees and Normalizing Binary Code Structures to Minimize ...)

The difference between the 4-ary SSc and the average SSc should be positive, as anticipated.
There is a good indicator for the difference in six file formats. For a given audio type, the 4-ary generates
a bigger space than the average SSc value, as indicated by the positive sign (+).SSc contrast between
Huffman Tree Scheme variants based on the overall average value, using the following Equation (14):

𝑆𝑆𝑆𝑆𝑆𝑆�����𝑗𝑗 =
∑𝑋𝑋𝑗𝑗
𝑁𝑁𝑗𝑗

 ... (14)

Note:
𝑆𝑆𝑆𝑆𝑆𝑆����� : The average SSc value of j
j : Huffman variance components (Static, Dynamic, Quad, Okta, Hexa, 4-ary)
∑𝑋𝑋𝑗𝑗 : The sum of the values of the members j
𝑁𝑁𝑗𝑗 : The number of members j

Table 9. Average SSc Calculation Results Based on Huffman Tree Scheme Variants

Huffman Scheme Average SSc (%) Overall Average (%) Note
Static 56.87 51.55 Above average

Dynamic 56.44 Above average
Quad 51.10 Below average
Okta 48.06 Below average
Hexa 45.11 Below average
4-ary 51.71 Above average

Table 9 shows that the average value for the 4-ary variation is higher than the overall average
value. However, the average SSc value of 4-ary remains lower than Static and Dynamic, implying that
4-ary's ability to provide remaining compression space is on par with Static and Dynamic schemes.

The amount of time needed for compression by the deflate application is known as Total Time
Compression (TTC). A program is considered superior if it can compress files more quickly. TTC data
processing is accomplished by figuring up how long it takes the program to compress each MB of the
file (MBps). The following is the equation:

𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 = 𝑈𝑈𝑈𝑈
𝑡𝑡

 .. (15)

Note :
𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 : Time to compress the file i
i : Audio types
𝑈𝑈𝑈𝑈 : Size of file (megabytes – MB)
𝑡𝑡 : Time used to perform compression (seconds - s)

It is evident from Table 10's graph that, depending on the kind of audio, some component versions

offer TCT benefits. The graph shows that the 4-ary application has TCT advantages on audio files of
the Music mono type (18.37 MBps), Music Stereo (7.26 MBps), Noise (4.39 MBps), and Sound Effects
(6.45 MBps), the Quad variant has speed advantages on Speech (6.09 MBps) and Instrument (6.20
MBps) type files, the Okta variant excels on Music (6.19 MBps) type files, and the Hexa variant excels
on RippingCD (5.21 MBps) type files.

Table 10. TCT Calculation Results of Huffman Tree Scheme Variants

Type Audio Average (all) TTC (mbps)
Static Dynamic Quad Okta Heksa 4-ary

Music 5.99 5.76 0.08 6.04 6.19 5.93 6.05
Music mono 10.25 11.19 0.14 7.38 7.20 7.13 18.37
Music stereo 7.08 6.92 0.11 7.22 6.76 7.22 7.26
Ripping CD 5.00 5.10 0.11 4.81 5.09 5.21 4.76

Speech 5.80 5.71 0.14 6.09 5.56 5.78 5.84
Noise 4.34 4.11 0.10 4.50 4.33 4.39 4.39

Sound Effect 6.28 6.09 0.16 6.32 6.31 6.22 6.45
Instruments 5,56 4,57 0,09 6,20 5,93 5,94 5,18

Elinvo (Electronics, Informatics, and Vocational Education), 10(1), May 2025 - 75
ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)

Tonny Hidayat, et al. (Optimizing 4-ary Huffman Trees and Normalizing Binary Code Structures to Minimize ...)

Using the following formula, TTC is compared between the Huffman Tree Scheme :

𝑇𝑇𝑇𝑇𝑇𝑇������𝑗𝑗 =
∑𝑋𝑋𝑗𝑗
𝑁𝑁𝑗𝑗

 ... (16)

Note :
𝑇𝑇𝑇𝑇𝑇𝑇������ : The average TTC value of j
j : Huffman variance components
∑𝑋𝑋𝑗𝑗 : Sum of the values of the members j
𝑁𝑁𝑗𝑗 : Number of members j

The calculation results can be seen in the following Table 11.

Table 11. Average TCT Calculation Results Based on The Huffman Tree Scheme Variant

Scheme Average TTC (MBps) Overall Average (MBps) Note
Static 6.18 6,29 Below average

Dynamic <0.2
Quad 6.07
Okta 5.92
Hexa 5.98
4-ary 7.29 Above average

The 4-ary application's TTC value (7.29 Mbps) is higher than typical, allowing it to compress

files faster than other Huffman variations. As a result, when compared to other Huffman Tree scheme
versions, 4-ary is the most efficient compression strategy for deflating data in terms of time.

CONCLUSION

The primary objective of this research is to optimize the compression of 16-bit audio data in WAV
format for archiving purposes, with a focus on two critical parameters: compression ratio and
compression time. In this study, we introduce many types of generation code that can be used to process
data bits in the future. The main design of the method we present is called 4-arry / Quad Modif by adding
normalization or a mechanism, the first of which is dynamic Huffman, which creates a procedure in
which, if there is a value with the same frequency/probability, the new value is positioned at the top
among the same values. The second adds a method from the Huffman Adaptive extension, namely the
use of additional data symbols whose frequency/probability value is 0, known as NYT (Not Yet
Transmitted); the difference with the architecture we suggest is that we utilize two types of 0 files named
'dummy'. According to the research findings, the 4-ary successfully balances compression ratio and
compression time, which is extremely useful if this technique is used to archive files in a lossless way.
Based on the ratio, the results are similar to those of the binary tree, but with a large increase in
processing speed (compression) and space requirements. Aside from the ratio, the main aspect to
consider while archiving files is compression speed. Thus, the suggested 4-ary algorithm compresses
16-bit data by balancing compression ratio and compression time.

ACKNOWLEDGMENT

This study was supported by Kemendikbud Ristek Dikti Republic of Indonesia No.
107/E5/PG.02.00.PL/2024, LLDIKTI V No. 0609.20/LL5-INT/AL.04/2024 and Universitas Amikom
Yogyakarta No. 037/KONTRAK-LPPM/AMIKOM/VI/2024.

Elinvo (Electronics, Informatics, and Vocational Education), 10(1), May 2025 - 76
ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)

Tonny Hidayat, et al. (Optimizing 4-ary Huffman Trees and Normalizing Binary Code Structures to Minimize ...)

REFERENCES

[1] D. Groppi, A. Pfeifer, D. A. Garcia, G. Krajačić, and N. Duić, “A review on energy storage and

demand side management solutions in smart energy islands,” Renew. Sustain. Energy Rev., vol.
135, p. 110183, Jan. 2021.

[2] F. Mentzer and M. Tschannen, “Learning better lossless compression using lossy
compression,” Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 6638--6647, 2020.

[3] T. Hidayat, M. H. Zakaria, and A. N. C. Pee, “Survey of Performance Measurement Indicators
for Lossless Compression Technique based on the Objectives,” in 2020 3rd International
Conference on Information and Communications Technology (ICOIACT), 2020, pp. 170–175.

[4] T. Hidayat, M. H. Zakaria, and A. N. C. Pee, “Increasing the Huffman generation code
algorithm to equalize compression ratio and time in lossless 16-bit data archiving,” Multimed.
Tools Appl., vol. 82, no. 16, pp. 24031–24068, Jul. 2023.

[5] J. C. Cavalcanti, M. Englert, M. Oliveira, and A. C. Constantini, “Microphone and Audio
Compression Effects on Acoustic Voice Analysis: A Pilot Study,” J. Voice, vol. 37, no. 2, pp.
162–172, Mar. 2023.

[6] S. Congero and K. Zeger, “Competitive Advantage of Huffman and Shannon-Fano Codes,”
IEEE Trans. Inf. Theory, pp. 1–1, 2024.

[7] U. Jayasankar, V. Thirumal, and D. Ponnurangam, “A survey on data compression techniques:
From the perspective of data quality, coding schemes, data type and applications,” J. King
Saud Univ. - Comput. Inf. Sci., vol. 33, no. 2, pp. 119–140, Feb. 2021.

[8] T. Hidayat, M. H. Zakaria, and N. Che Pee, “Comparison of Lossless Compression Schemes
for WAV Audio Data 16-Bit Between Huffman and Coding Arithmetic,” Int. J. Simul. Syst.
Sci. Technol., vol. 19, no. 6, pp. 36.1-36.7, Feb. 2019.

[9] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei, “A locally adaptive data compression
scheme,” Commun. ACM, vol. 29, no. 4, pp. 320–330, Mar. 1986.

[10] P. Sarker and M. L. Rahman, “Introduction to Adjacent Distance Array with Huffman
Principle: A New Encoding and Decoding Technique for Transliteration Based Bengali Text
Compression,” 2021, pp. 543–555.

[11] H. Al-Bahadili and S. M. Hussain, “A bit-level text compression scheme based on the ACW
algorithm,” Int. J. Autom. Comput., vol. 7, no. 1, pp. 123–131, 2010.

[12] H. Hermassi, R. Rhouma, and S. Belghith, “Joint compression and encryption using chaotically
mutated Huffman trees,” Commun. Nonlinear Sci. Numer. Simul., vol. 15, no. 10, pp. 2987–
2999, Oct. 2010.

[13] R. A. Chowdhury, M. Kaykobad, and I. King, “An efficient decoding technique for Huffman
codes,” Inf. Process. Lett., vol. 81, no. 6, pp. 305–308, 2002.

[14] P. R. Suri and M. Goel, “Ternary Tree and Memory-Efficient Huffman Decoding Algorithm,”
Int. J. Comput. Sci. Issues, vol. 8, no. 1, pp. 483–489, 2011.

[15] D. Huffman, “A Method for the Construction of Minimum-Redundancy Codes,” Proc. IRE,
vol. 40, no. 9, pp. 1098–1101, Sep. 1952.

[16] K. Chung, “Efficient Huffman decoding,” Inf. Process. Lett., vol. 61, pp. 97–99, 1997.
[17] R. Schack, “The length of a typical Huffman codeword,” IEEE Trans. Inf. Theory, vol. 40, no.

4, pp. 1246–1247, Jul. 1994.
[18] G. Katona and O. Nemetz, “Huffman codes and self-information,” IEEE Trans. Inf. Theory,

vol. 22, no. 3, pp. 337–340, May 1976.
[19] R. Hashemian, “Memory efficient and high-speed search Huffman coding,” IEEE Trans.

Commun., vol. 43, no. 10, pp. 2576–2581, 1995.
[20] P. M. Fenwick, “Huffman code efficiencies for extensions of sources,” IEEE Trans. Commun.,

vol. 43, no. 2/3/4, pp. 163–165, Feb. 1995.
[21] W. Szpankowski and S. Verdu, “Minimum Expected Length of Fixed-to-Variable Lossless

Compression Without Prefix Constraints,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4017–
4025, Jul. 2011.

[22] M. B. Baer, “A general framework for codes involving redundancy minimization,” IEEE
Trans. Inf. Theory, vol. 52, no. 1, pp. 344–349, Jan. 2006.

[23] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Test Data Compression Based on Variable-to-
Variable Huffman Encoding With Codeword Reusability,” IEEE Trans. Comput. Des. Integr.

Elinvo (Electronics, Informatics, and Vocational Education), 10(1), May 2025 - 77
ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)

Tonny Hidayat, et al. (Optimizing 4-ary Huffman Trees and Normalizing Binary Code Structures to Minimize ...)

Circuits Syst., vol. 27, no. 7, pp. 1333–1338, Jul. 2008.
[24] J. S. Vitter, “Algorithm 673: Dynamic Huffman coding,” ACM Trans. Math. Softw., vol. 15,

no. 2, pp. 158–167, 1987.
[25] A. Habib, A. S. M. L. Hoque, and M. R. Hussain, “H-HIBASE: Compression Enhancement of

HIBASE Technique Using Huffman Coding,” J. Comput., vol. 8, no. 5, pp. 1175–1183, May
2013.

[26] R. Gallager, “Variations on a theme by Huffman,” IEEE Trans. Inf. Theory, vol. 24, no. 6, pp.
668–674, Nov. 1978.

[27] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Trans.
Inf. Theory, vol. 23, no. 3, pp. 337–343, May 1977.

[28] Welch, “A Technique for High-Performance Data Compression,” Computer (Long. Beach.
Calif)., vol. 17, no. 6, pp. 8–19, Jun. 1984.

[29] Y. K. Lin, S. C. Huang, and C. H. Yang, “A fast algorithm for Huffman decoding based on a
recursion Huffman tree,” J. Syst. Softw., vol. 85, no. 4, pp. 974–980, 2012.

[30] J. Alakuijala et al., “Brotli,” ACM Trans. Inf. Syst., vol. 37, no. 1, pp. 1–30, Jan. 2019.
[31] C. E. Shannon, “A Mathematical Theory of Communication,” Bell Syst. Tech. J., vol. 27, no. 3,

pp. 379–423, Jul. 1948.
[32] K. Sayood, “Huffman Coding,” in Introduction to Data Compression, Elsevier, 2018, pp. 41–

88.
[33] P. D. Johnson Jr., G. A. Harris, and D. C. Hankerson, Introduction to Information Theory and

Data Compression. Chapman and Hall/CRC, 2003.
[34] B. J. Oommen and L. Rueda, “A New Family of Weak Estimators for Training in Non-

stationary Distributions,” 2004, pp. 644–652.
[35] N. Faller, “An adaptive system for data compression,” in In Record of the 7th Asilomar

Conference on Circuits, Systems, and Computers, 1973, pp. 593–597.
[36] K. Sayood, “Huffman Coding,” Introd. to Data Compression, pp. 41–88, 2018.
[37] H. Chen, W. Xie, A. Vedaldi, and A. Zisserman, “Vggsound: A Large-Scale Audio-Visual

Dataset,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2020, pp. 721–725.

[38] N. Griffioen, W. Sterkens, W. Dewulf, and J. Peeters, “Enhancing Battery Detection in X-Ray
Imaging in WEEE with a 16 bit Deep Learning Pipeline,” in 2024 Electronics Goes Green
2024+ (EGG), 2024, pp. 1–6.

[39] D. Snyder, G. Chen, and D. Povey, “MUSAN: A Music, Speech, and Noise Corpus,” no.
October, Oct. 2015.

[40] J. J. Bosch, R. Marxer, and E. Gómez, “Evaluation and combination of pitch estimation
methods for melody extraction in symphonic classical music,” J. New Music Res., vol. 45, no.
2, pp. 101–117, Apr. 2016.

[41] J. J. Bosch, J. Janer, F. Fuhrmann, and P. Herrera, “A comparison of sound segregation
techniques for predominant instrument recognition in musical audio signals,” Proc. 13th Int.
Soc. Music Inf. Retr. Conf. ISMIR 2012, no. Ismir, pp. 559–564, 2012.

[42] E. Fonseca, M. Plakal, D. P. W. Ellis, F. Font, X. Favory, and X. Serra, “Learning Sound Event
Classifiers from Web Audio with Noisy Labels,” ICASSP, IEEE Int. Conf. Acoust. Speech
Signal Process. - Proc., vol. 2019-May, no. 688382, pp. 21–25, 2019.

	INTRODUCTION
	METHODS
	Total Length (TL)
	Entropy (H)
	Average Length ,(𝑳-𝒂𝒗.)
	Redundancy (R)
	Code Efficiency (CE)
	Variances (V)
	Total Code (TC)
	Compression Ratio (CR)
	Saving Space (SS)
	Proposed Huffman With 4-Ary
	RESULT AND DISCUSSION
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

